首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   4篇
  129篇
  2022年   2篇
  2021年   9篇
  2020年   1篇
  2019年   1篇
  2018年   6篇
  2017年   3篇
  2015年   7篇
  2014年   11篇
  2013年   14篇
  2012年   11篇
  2011年   13篇
  2010年   10篇
  2009年   5篇
  2008年   8篇
  2007年   5篇
  2006年   5篇
  2005年   3篇
  2004年   3篇
  2003年   4篇
  2002年   4篇
  1997年   1篇
  1996年   2篇
  1986年   1篇
排序方式: 共有129条查询结果,搜索用时 0 毫秒
91.
This work aims at the valorization of sugarcane bagasse by extracting xylose which is destined to the production of xylitol after purification and hydrogenation. Our approach consists in applying the principle of biorefinery to sugarcane bagasse because of its hemicellulose composition (particularly rich in xylan: (92%)). Optimizing of the thermal treatment was investigated. A treatment at 170 °C for 2 h was found optimal, with higher solubilzation of hemicellulose than that at 150 °C and lower degradation of sugar monomers than 190 °C. Recovery of xylose was high and the purity of xylose solution (78%) allows expecting an easy purification and separation of xylose before hydrogenation. Analysis of thermal hydrolyzates shows the presence of xylan oligomers and polymers with large distribution of DPs. This fraction should be submitted to enzymatic treatment to recover more xylose monomer.  相似文献   
92.
93.
Iron is an important nutrient in N2-fixing legume nodules. The demand for this micronutrient increases during the symbiosis establishment, where the metal is utilized for the synthesis of various iron-containing proteins in both the plant and the bacteroid. Unfortunately, in spite of its importance, iron is poorly available to plant uptake since its solubility is very low when in its oxidized form Fe(III). In the present study, the effect of iron deficiency on the activity of some proteins involved in Strategy I response, such as Fe-chelate reductase (FC-R), H+-ATPase, and phosphoenolpyruvate carboxylase (PEPC) and the protein level of iron regulated transporter (IRT1) and H+-ATPase proteins has been investigated in both roots and nodules of a tolerant (Flamingo) and a susceptible (Coco blanc) cultivar of common bean plants. The main results of this study show that the symbiotic tolerance of Flamingo can be ascribed to a greater increase in the FC-R and H+-ATPase activities in both roots and nodules, leading to a more efficient Fe supply to nodulating tissues. The strong increase in PEPC activity and organic acid content, in the Flamingo root nodules, suggests that under iron deficiency nodules can modify their metabolism in order to sustain those activities necessary to acquire Fe directly from the soil solution.  相似文献   
94.
The present work aims at studying the effect of gamma radiation on the hard dental tissues. Eighty adult male albino rats with weights of about 250 g were used. The rats were irradiated at 0.2, 0.5, 1.0, 2.0, 4.0 and 6.0 Gy whole-body gamma doses. The effects on hard dental tissue samples were investigated after 48 h in histological and ground sections using light microscopy. Areas of acid phosphatase activity were detected using tartrate-resistant acid phosphatase (TRAP) stains. Observation of histological sections revealed disturbance in predentin thickness and odontoblastic layer as the irradiation dose increased. In cementum, widened cementocytes lacunae were occasionally detected even with low irradiated doses. On the other hand, relatively homogenous enamel was detected with darkened areas in enamel surface at doses over than 0.5 Gy. TRAP-positive cells were detected on the surface of the dentin of irradiated groups as well as cementum surface. Minimal detectable changes were observed in ground sections.  相似文献   
95.
The demand for iron in leguminous plants increases during symbiosis, as the metal is utilised for the synthesis of various Fe-containing proteins in both plant and bacteroids. However, the acquisition of this micronutrient is problematic due to its low bioavailability at physiological pH under aerobic conditions. Induction of root Fe(III)-reductase activity is necessary for Fe uptake and can be coupled to the rhizosphere acidification capacity linked to the H+-ATPase activity. Fe uptake is related to the expression of a Fe2+ transporter (IRT1). In order to verify the possible role of nodules in the acquisition of Fe directly from the soil solution, the localization of H+-ATPase and IRT1 was carried out in common bean nodules by immuno-histochemical analysis. The results showed that these proteins were particularly abundant in the central nitrogen-fixing zone of nodules, around the periphery of infected and uninfected cells as well as in the vascular bundle of control nodules. Under Fe deficiency an over-accumulation of H+-ATPase and IRT1 proteins was observed especially around the cortex cells of nodules. The results obtained in this study suggest that the increase in these proteins is differentially localized in nodules of Fe-deficient plants when compared to the Fe-sufficient condition and cast new light on the possible involvement of nodules in the direct acquisition of Fe from the nutrient solution.  相似文献   
96.
97.
Tomato seedlings grown on nitric medium and treated with various cadmium concentrations (0 to 50 microM) were used. Results obtained show that cadmium remains predominantly located in the roots, which then seem to play the role of trap-organs. Increasing cadmium concentration in the medium leads particularly to a decrease in NO3- accumulation, together with a decrease in the activity of glutamine synthetase and in the quantity of plastidic isoform ARNm (GS2), and, on the contrary, to an increase of the cytosolic isoform ARNm (GS1). On the other hand, stimulations were observed for NADH-dependent glutamate synthase, NADH-dependent glutamate dehydrogenase, ARNm quantity of this enzyme, ammonium accumulation, and protease activity. In parallel, stimulations were observed for NAD+ and NADP+-dependent malate dehydrogenase and NADP+-dependent isocitrate dehydrogenase. These results were discussed in relation to the hypothesis attributing to the dehydrogenase enzymes (GDH, MDH, ICDH) an important role in the plant defence processes against cadmium-induced stresses.  相似文献   
98.
The R2TP is a recently identified Hsp90 co-chaperone, composed of four proteins as follows: Pih1D1, RPAP3, and the AAA+-ATPases RUVBL1 and RUVBL2. In mammals, the R2TP is involved in the biogenesis of cellular machineries such as RNA polymerases, small nucleolar ribonucleoparticles and phosphatidylinositol 3-kinase-related kinases. Here, we characterize the spaghetti (spag) gene of Drosophila, the homolog of human RPAP3. This gene plays an essential function during Drosophila development. We show that Spag protein binds Drosophila orthologs of R2TP components and Hsp90, like its yeast counterpart. Unexpectedly, Spag also interacts and stimulates the chaperone activity of Hsp70. Using null mutants and flies with inducible RNAi, we show that spaghetti is necessary for the stabilization of snoRNP core proteins and target of rapamycin activity and likely the assembly of RNA polymerase II. This work highlights the strong conservation of both the HSP90/R2TP system and its clients and further shows that Spag, unlike Saccharomyces cerevisiae Tah1, performs essential functions in metazoans. Interaction of Spag with both Hsp70 and Hsp90 suggests a model whereby R2TP would accompany clients from Hsp70 to Hsp90 to facilitate their assembly into macromolecular complexes.  相似文献   
99.
Plasmodesmata (PD) are nano-sized membrane-lined channels controlling intercellular communication in plants. Although progress has been made in identifying PD proteins, the role played by major membrane constituents, such as the lipids, in defining specialized membrane domains in PD remains unknown. Through a rigorous isolation of “native” PD membrane fractions and comparative mass spectrometry-based analysis, we demonstrate that lipids are laterally segregated along the plasma membrane (PM) at the PD cell-to-cell junction in Arabidopsis thaliana. Remarkably, our results show that PD membranes display enrichment in sterols and sphingolipids with very long chain saturated fatty acids when compared with the bulk of the PM. Intriguingly, this lipid profile is reminiscent of detergent-insoluble membrane microdomains, although our approach is valuably detergent-free. Modulation of the overall sterol composition of young dividing cells reversibly impaired the PD localization of the glycosylphosphatidylinositol-anchored proteins Plasmodesmata Callose Binding 1 and the β-1,3-glucanase PdBG2 and altered callose-mediated PD permeability. Altogether, this study not only provides a comprehensive analysis of the lipid constituents of PD but also identifies a role for sterols in modulating cell-to-cell connectivity, possibly by establishing and maintaining the positional specificity of callose-modifying glycosylphosphatidylinositol proteins at PD. Our work emphasizes the importance of lipids in defining PD membranes.  相似文献   
100.
Copper is both a nutrient and an environmental toxin that is taken up by plants. In order to determine the subcellular localization of copper and to assess the resulting metabolic changes, we exposed 14-day-old bean seedlings to nutrient solutions containing varying concentrations of Cu2+ ions for 3 days. Biochemical analyses revealed that the cell wall was the major site of Cu2+ accumulation in the leaves of treated plants. Excess copper modified the activity of lignifying peroxidases in both soluble and ionic cell wall-bound fraction. The activity of ionic GPX (guaiacol peroxidase, EC 1.11.1.7) was increased by 50 and 75 μM CuSO4. The activities of both ionic CAPX (coniferyl alcohol peroxidase, EC 1.11.1.4) and NADH oxidase were increased by both copper concentrations tested. While soluble CAPX activity decreased in leaves treated by all copper concentrations tested, the activity of soluble NADH oxidase remained unchanged at 50 μM and was enhanced at 75 μM. Treatment with CuSO4 also increased the abundance of total phenol compounds and induced stimulation in the activity of PAL (phenylalanine ammonia lyase, EC. 4.3.1.5). Using histochemistry in combination with fluorescence microscopy we show that bean leaves from copper-exposed plants displayed biochemical and structural modifications reinforcing the cell walls of their xylem tissues. On the other hand, the perivascular fiber sclerenchyma appeared to be less developed in treated leaves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号