首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20873篇
  免费   1692篇
  国内免费   1701篇
  2024年   31篇
  2023年   264篇
  2022年   653篇
  2021年   1146篇
  2020年   763篇
  2019年   975篇
  2018年   912篇
  2017年   614篇
  2016年   911篇
  2015年   1339篇
  2014年   1517篇
  2013年   1578篇
  2012年   1934篇
  2011年   1697篇
  2010年   995篇
  2009年   920篇
  2008年   1088篇
  2007年   904篇
  2006年   827篇
  2005年   649篇
  2004年   508篇
  2003年   448篇
  2002年   371篇
  2001年   323篇
  2000年   321篇
  1999年   324篇
  1998年   208篇
  1997年   242篇
  1996年   191篇
  1995年   189篇
  1994年   162篇
  1993年   129篇
  1992年   181篇
  1991年   143篇
  1990年   146篇
  1989年   98篇
  1988年   90篇
  1987年   87篇
  1986年   63篇
  1985年   65篇
  1984年   43篇
  1983年   47篇
  1982年   21篇
  1981年   16篇
  1980年   14篇
  1979年   12篇
  1978年   10篇
  1969年   9篇
  1968年   8篇
  1965年   16篇
排序方式: 共有10000条查询结果,搜索用时 307 毫秒
971.
The increased interest in the benefits of omega-3 fatty acids for human health has resulted in the commercial development of the dinoflagellate Crypthecodinium cohnii for production of docosahexaenoic acid (DHA). The growing market demand for DHA requires highly efficient, very large scale cultures of DHA. While the effects of hydrodynamic forces on dinoflagellates have been investigated for several decades, the majority of the work focused on the negative effects of oceanic turbulence on the population growth of environmentally important dinoflagellates. In contrast, significantly less is known on the effect of hydrodynamic forces encountered by algae in bioprocesses. Unlike other studies conducted on algae, this study employed a microfluidic, flow contraction device to evaluate the effect of transient hydrodynamic forces on C. cohnii cells. It was found that C. cohnii cells can sustain the energy dissipation rate of 5.8 x 10(7) W/m3 without lysis. However, an obvious sublethal effect, the loss of flagella, was observed at a lower level of 1.6 x 10(7) W/m3. Finally the cell-bubble interaction and the effect of bubble rupture were also explored to simulate the conditions of sparged bioreactors.  相似文献   
972.
The purpose of this study was to assess the stability of protein formulations using a device designed to generate defined, quantifiable levels of shear in the presence of a solid-liquid interface. The device, based on a rotating disk, produced shear strain rates of up to 3.4 x 10(4) s(-1) (at 250 rps) and was designed to exclude air-liquid interfaces and enable temperature to be controlled. Computational fluid dynamics (CFD) was used to study the fluid flow patterns within the device and to determine the shear strain rate (s(-1)) at a range of disk speeds. The device was then used to study the effect on a monoclonal IgG4 of high levels of shear at the solid-liquid interface. Monomeric antibody concentration and aggregation of the protein in solution were monitored by gel permeation HPLC and turbidity at 350 nm. High shear strain rates were found to cause significant levels of protein aggregation and precipitation with reduction of protein monomer following first-order kinetics. Monomer reduction rate was determined for a range of disk speeds and found to have a nonlinear relationship with shear strain rate, indicating the importance of identifying and minimizing such environments during processing.  相似文献   
973.
Endocytosis plays key roles during infection of plant-pathogenic fungi, but its regulatory mechanisms are still largely unknown. Here, we identified a putative endocytosis-related gene, PAL1, which was highly expressed in appressorium of Magnaporthe oryzae, and was found to be important for appressorium formation and maturation. Deletion of PAL1 significantly reduced the virulence of M. oryzae due to defects in appressorial penetration and invasive growth in host cells. The Pal1 protein interacted and colocalized with the endocytosis protein Sla1, suggesting it is involved in endocytosis. The Δpal1 mutant was significantly reduced in appressorium formation, which was recovered by adding exogenous cAMP and 3-isobutyl-1-methylxanthine (IBMX). Moreover, the phosphorylation level of Pmk1 in Δpal1 was also reduced, suggesting Pal1 functions upstream of both the cAMP and Pmk1 signalling pathways. As a consequence, the utilization of glycogen and lipid, appressorial autophagy, actin ring formation, localization of septin proteins, as well as turgor accumulation were all affected in the Δpal1 mutant. Taken together, Pal1 regulates cAMP and the Pmk1 signalling pathway for appressorium formation and maturation to facilitate infection of M. oryzae.  相似文献   
974.
Zhu  Jing  Zeng  Zhaofu  Xiong  Mengqing  Mo  Huaheng  Jin  Meng  Hu  Ke 《Sleep and biological rhythms》2022,20(3):421-429
Sleep and Biological Rhythms - The relationship between plasma orexin A (OXA) levels and cognitive function in patients with obstructive sleep apnea (OSA) remains unclear. This study aimed to...  相似文献   
975.
976.
977.
978.
Nitrogen-doped carbon dots (NCDs) with bright blue fluorescence were constructed by a hydrothermal method using sucrose and l- proline as raw materials. The NCDs were characterized by transmitted electron microscopy, X-ray diffraction, Fourier-transform infrared spectrometry, X-ray photoelectron spectroscopy, and ultraviolet-visible absorption and fluorescence spectroscopy to investigate the morphology, elemental composition, and optical properties. The NCDs had good water solubility, high dispersibility with an average diameter of only 1.7 nm, and satisfactory optical properties with a fluorescence quantum yield of 23.4%. The NCDs were employed for the detection of bilirubin. A good linear response of the NCDs in the range 0.35–9.78 μM was obtained for bilirubin with a detection limit of 33 nM. The NCDs were also applied to the analysis of real samples, serum and urine, with a recovery of 95.34% to 104.66%. The low cytotoxicity and good biocompatibility of the NCDs were indicated by an MTT assay and cell imaging of HeLa cells. Compared with other detection systems, using NCDs for bilirubin detection was a facile and efficient method with good selectivity and sensitivity.  相似文献   
979.
In the past, rice hybrids with strong heterosis have been obtained empirically, by developing and testing thousands of combinations. Here, we aimed to determine whether heterosis of an elite hybrid could be achieved by manipulating major quantitative trait loci. We used 202 chromosome segment substitution lines from the elite hybrid Shanyou 63 to evaluate single segment heterosis (SSH) of yield per plant and identify heterotic loci. All nine detected heterotic loci acted in a dominant fashion, and no SSH exhibited overdominance. Functional alleles of key yield-related genes Ghd7, Ghd7.1, Hd1, and GS3 were dispersed in both parents. No functional alleles of three investigated genes were expressed at higher levels in the hybrids than in the more desirable parents. A hybrid pyramiding eight heterotic loci in the female parent Zhenshan 97 background had a comparable yield to Shanyou 63 and much higher yield than Zhenshan 97. Five hybrids pyramiding eight or nine heterotic loci in the combined parental genome background showed similar yield performance to that of Shanyou 63. These results suggest that dominance underlying functional complementation is an important contributor to yield heterosis and that heterosis assembly might be successfully promised by manipulating several major dominant heterotic loci.  相似文献   
980.
Microtubules are dynamic cytoskeleton structures playing fundamental roles in plant responses to salt stress. The precise mechanisms by which microtubule organization is regulated under salt stress are largely unknown. Here, we report that Arabidopsis thaliana MICROTUBULE-DESTABILIZING PROTEIN 25 (MDP25; also known as PLASMA MEMBRANE-ASSOCIATED CATION-BINDING PROTEIN 1 (PCaP1)) helps regulate microtubule organization. Under salt treatment, elevated cytosolic Ca2+ concentration caused MDP25 to partially dissociate from the plasma membrane, promoting microtubule depolymerization. When Ca2+ signaling was blocked by BAPTA-AM or LaCl3, microtubule depolymerization in wild-type and MDP25-overexpressing cells was slower, while there was no obvious change in mdp25 cells. Knockout of MDP25 improved microtubule reassembly and was conducive to microtubule integrity under long-term salt treatment and microtubule recovery after salt stress. Moreover, mdp25 seedlings exhibited a higher survival rate under salt stress. The presence microtubule-disrupting reagent oryzalin or microtubule-stabilizing reagent paclitaxel differentially affected the survival rates of different genotypes under salt stress. MDP25 promoted microtubule instability by affecting the catastrophe and rescue frequencies, shrinkage rate and time in pause phase at the microtubule plus-end and the depolymerization rate at the microtubule minus-end. These findings reveal a role for MDP25 in regulating microtubule organization under salt treatment by affecting microtubule dynamics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号