首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3497篇
  免费   319篇
  国内免费   1篇
  3817篇
  2024年   6篇
  2023年   29篇
  2022年   71篇
  2021年   101篇
  2020年   74篇
  2019年   96篇
  2018年   94篇
  2017年   86篇
  2016年   142篇
  2015年   207篇
  2014年   208篇
  2013年   247篇
  2012年   371篇
  2011年   327篇
  2010年   196篇
  2009年   167篇
  2008年   224篇
  2007年   228篇
  2006年   164篇
  2005年   167篇
  2004年   160篇
  2003年   128篇
  2002年   107篇
  2001年   21篇
  2000年   8篇
  1999年   21篇
  1998年   10篇
  1997年   14篇
  1996年   5篇
  1995年   6篇
  1994年   7篇
  1993年   7篇
  1992年   6篇
  1991年   13篇
  1990年   10篇
  1989年   6篇
  1988年   6篇
  1987年   9篇
  1986年   7篇
  1985年   6篇
  1984年   4篇
  1982年   4篇
  1979年   3篇
  1976年   3篇
  1975年   6篇
  1974年   4篇
  1969年   2篇
  1966年   4篇
  1965年   2篇
  1924年   2篇
排序方式: 共有3817条查询结果,搜索用时 0 毫秒
991.
992.
Hybridization is an evolutionary mechanism capable of enhancing adaptive potential, especially among species in fragmented or disturbed ecosystems like coastal marshes. In this study, we evaluated whether hybridization might influence adaptive responses in coastal marshes that are susceptible to the effects of global environmental change. To do so, we examined the extent and nature of hybridization between Schoenoplectus americanus and S. pungens, two ecologically dominant sedges in low-lying marshes across Chesapeake Bay (USA). Observed patterns of variation at genetically based morphological traits, cpDNA and nuclear microsatellite markers confirm that introgressive hybridization occurs between the two species. Comparisons of microsatellite and cpDNA profiles found that hybridization is reciprocal, although a disproportionate number of hybrids exhibit genomic asymmetries favoring S. americanus. AIC model selection consistently identified latitude as the strongest explanatory variable for the distribution of parental species, although discriminant analysis indicated that distributions also correspond to variation in environmental conditions. Discriminant analysis further indicated that ecological correlates of hybrid and S. americanus genotypes are similar, but not uniformly so. These findings indicate that the boundary between S. americanus and S. pungens is porous, and that hybridization could influence responses of one or both species to changing environmental regimes.  相似文献   
993.
Type I interferons (IFNs) are known to mediate viral control, and also promote survival and expansion of virus-specific CD8+ T cells. However, it is unclear whether signaling cascades involved in eliciting these diverse cellular effects are also distinct. One of the best-characterized anti-viral signaling mechanisms of Type I IFNs is mediated by the IFN-inducible dsRNA activated protein kinase, PKR. Here, we have investigated the role of PKR and Type I IFNs in regulating viral clearance and CD8+ T cell response during primary and secondary viral infections. Our studies demonstrate differential requirement for PKR, in viral control versus elicitation of CD8+ T cell responses during primary infection of mice with lymphocytic choriomeningitis virus (LCMV). PKR-deficient mice mounted potent CD8+ T cell responses, but failed to effectively control LCMV. The compromised LCMV control in the absence of PKR was multifactorial, and linked to less effective CD8+ T cell-mediated viral suppression, enhanced viral replication in cells, and lower steady state expression levels of IFN-responsive genes. Moreover, we show that despite normal expansion of memory CD8+ T cells and differentiation into effectors during a secondary response, effective clearance of LCMV but not vaccinia virus required PKR activity in infected cells. In the absence of Type I IFN signaling, secondary effector CD8+ T cells were ineffective in controlling both LCMV and vaccinia virus replication in vivo. These findings provide insight into cellular pathways of Type I IFN actions, and highlight the under-appreciated importance of innate immune mechanisms of viral control during secondary infections, despite the accelerated responses of memory CD8+ T cells. Additionally, the results presented here have furthered our understanding of the immune correlates of anti-viral protective immunity, which have implications in the rational design of vaccines.  相似文献   
994.
995.
Autophagy degrades pathogens in vitro. The autophagy gene Atg5 has been reported to be required for IFN-γ-dependent host protection in vivo. However, these protective effects occur independently of autophagosome formation. Thus, the in vivo role of classic autophagy in protection conferred by adaptive immunity and how adaptive immunity triggers autophagy are incompletely understood. Employing biochemical, genetic and morphological studies, we found that CD40 upregulates the autophagy molecule Beclin 1 in microglia and triggers killing of Toxoplasma gondii dependent on the autophagy machinery. Infected CD40(-/-) mice failed to upregulate Beclin 1 in microglia/macrophages in vivo. Autophagy-deficient Beclin 1(+/-) mice, mice with deficiency of the autophagy protein Atg7 targeted to microglia/macrophages as well as CD40(-/-) mice exhibited impaired killing of T. gondii and were susceptible to cerebral and ocular toxoplasmosis. Susceptibility to toxoplasmosis occurred despite upregulation of IFN-γ, TNF-α and NOS2, preservation of IFN-γ-induced microglia/macrophage anti-T. gondii activity and the generation of anti-T. gondii T cell immunity. CD40 upregulated Beclin 1 and triggered killing of T. gondii by decreasing protein levels of p21, a molecule that degrades Beclin 1. These studies identified CD40-p21-Beclin 1 as a pathway by which adaptive immunity stimulates autophagy. In addition, they support that autophagy is a mechanism through which CD40-dependent immunity mediates in vivo protection and that the CD40-autophagic machinery is needed for host resistance despite IFN-γ.  相似文献   
996.
997.

Background

Circadian disruptions through frequent transmeridian travel, rotating shift work, and poor sleep hygiene are associated with an array of physical and mental health maladies, including marked deficits in human cognitive function. Despite anecdotal and correlational reports suggesting a negative impact of circadian disruptions on brain function, this possibility has not been experimentally examined.

Methodology/Principal Findings

In the present study, we investigated whether experimental ‘jet lag’ (i.e., phase advances of the light∶dark cycle) negatively impacts learning and memory and whether any deficits observed are associated with reductions in hippocampal cell proliferation and neurogenesis. Because insults to circadian timing alter circulating glucocorticoid and sex steroid concentrations, both of which influence neurogenesis and learning/memory, we assessed the contribution of these endocrine factors to any observed alterations. Circadian disruption resulted in pronounced deficits in learning and memory paralleled by marked reductions in hippocampal cell proliferation and neurogenesis. Significantly, deficits in hippocampal-dependent learning and memory were not only seen during the period of the circadian disruption, but also persisted well after the cessation of jet lag, suggesting long-lasting negative consequences on brain function.

Conclusions/Significance

Together, these findings support the view that circadian disruptions suppress hippocampal neurogenesis via a glucocorticoid-independent mechanism, imposing pronounced and persistent impairments on learning and memory.  相似文献   
998.
Research on communication between glia and neurons has increased in the past decade. The onset of neuropathic pain, a major clinical problem that is not resolved by available therapeutics, involves activation of spinal cord glia through the release of proinflammatory cytokines in acute animal models of neuropathic pain. Here, we demonstrate for the first time that the spinal action of the proinflammatory cytokine, interleukin 1 (IL-1) is involved in maintaining persistent (2 months) allodynia induced by chronic-constriction injury (CCI). The anti-inflammatory cytokine IL-10 can suppress proinflammatory cytokines and spinal cord glial amplification of pain. Given that IL-1 is a key mediator of neuropathic pain, developing a clinically viable means of long-term delivery of IL-10 to the spinal cord is desirable. High doses of intrathecal IL-10-gene therapy using naked plasmid DNA (free pDNA-IL-10) is effective, but the dose required limits its potential clinical utility. Here we show that intrathecal gene therapy for neuropathic pain is improved sufficiently using two, distinct synthetic polymers, poly(lactic-co-glycolic) and polyethylenimine, that substantially lower doses of pDNA-IL-10 are effective. In conclusion, synthetic polymers used as i.t. gene-delivery systems are well-tolerated and improve the long-duration efficacy of pDNA-IL-10 gene therapy.  相似文献   
999.
In response to volume expansion, red blood cells of the little skate (Raja erinacea) initially swell and then release small organic compounds and osmotically obligated water in what is called a regulatory volume decrease (RVD) to restore cell volume. One of the major intracellular solutes lost during this process is the non-metabolized beta amino acid taurine. This hypoosmotic-induced increase in cell taurine permeability requires the anion exchanger, skAE1. The abundance of this transporter increases on the surface plasma membrane by a process of exocytosis. The second-messenger pathways involved in exocytosis of skAE1 were investigated with the use of inhibitors which affect membrane trafficking. Hypoosmotic-stimulated taurine uptake was significantly decreased by 42% with wortmannin, a phosphatidylinositol 3-kinase (PI3 kinase) inhibitor. Additional evidence for the involvement of PI3K was obtained with a second inhibitor, LY294002, which decreased the hypoosmotic-stimulated taurine uptake by 28%. The state of actin is also involved, as the actin filament depolymerizer latrunculin B decreased hypoosmotic-stimulated taurine uptake by approximately 40%. Although hypoosmotic conditions did not stimulate changes in the distribution of actin between filamentous and globular forms, latrunculin stimulated a decrease in filamentous actin and increase in globular actin in both isoosmotic and hypoosmotic conditions. Disruptors of other potential cytoskeletal factors (myosin, kinesin, dynein, and microtubules) did not affect taurine uptake. The present results suggest that the exocytosis of skAE1 stimulated by hyposmotic-induced cell volume expansion requires activation of PI3 kinase and is regulated by the state of actin filaments.  相似文献   
1000.
In many species, young animals learn about various breedingpatches in one year and use what they have learned to settlein a promising patch the next. Common loons (Gavia immer) seemgood candidates for such prospecting as prebreeders and displacedbreeders intrude frequently into breeding territories defendedby monogamous pairs yet engage in no extrapair copulations.We tested 3 hypotheses for prospecting in loons. The permanentattributes hypothesis gained little support as we found no consistentdifferences in quality between territories and no physical orbiotic trait that predicted reproductive success in a territory.We found some support for the conspecific attraction hypothesisas intruders were attracted to conspecifics in a lake in theshort term; however, intrusions were not more frequent in territoriesthat had experienced regular use by a pair the previous yearthan in territories that had previously been vacant. Instead,the increase in intrusion rate after a year of chick productionsupported the habitat-copying hypothesis, which states thatfloaters use the presence of chicks as a cue to target territoriesfor future attempts at territorial takeover. Despite this systemof prospecting, founding of new territories was common. Onestriking finding was the tendency of territorial breeders toconceal chicks from flying intruders, perhaps to avoid futureterritorial takeover.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号