首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1124篇
  免费   62篇
  国内免费   2篇
  2021年   12篇
  2020年   6篇
  2018年   12篇
  2017年   6篇
  2016年   9篇
  2015年   34篇
  2014年   43篇
  2013年   54篇
  2012年   51篇
  2011年   70篇
  2010年   38篇
  2009年   34篇
  2008年   59篇
  2007年   56篇
  2006年   37篇
  2005年   59篇
  2004年   52篇
  2003年   32篇
  2002年   32篇
  2001年   47篇
  2000年   34篇
  1999年   33篇
  1998年   13篇
  1997年   12篇
  1996年   12篇
  1995年   8篇
  1993年   10篇
  1992年   19篇
  1991年   27篇
  1990年   15篇
  1989年   19篇
  1988年   31篇
  1987年   16篇
  1986年   17篇
  1985年   20篇
  1984年   10篇
  1983年   11篇
  1982年   9篇
  1981年   11篇
  1980年   8篇
  1979年   7篇
  1978年   15篇
  1977年   7篇
  1976年   9篇
  1975年   13篇
  1974年   7篇
  1973年   6篇
  1972年   7篇
  1970年   5篇
  1966年   8篇
排序方式: 共有1188条查询结果,搜索用时 203 毫秒
941.
942.
Gold nanorods have strong absorption bands in the near-infrared region, in which light penetrates deeply into tissues. The absorbed light energy is converted into heat by gold nanorods, the so-called 'photothermal effect'. Hence, gold nanorods are expected to act not only as on-demand thermal converters for photothermal therapy but also as controllers of a drug-release system responding to irradiation by near-infrared light. To achieve a controlled-release system that can be triggered by light irradiation, double-stranded DNA (dsDNA) was modified on gold nanorods. When the dsDNA-modified gold nanorods were irradiated by near-infrared light, the single-stranded DNA (ssDNA) was released from gold nanorods due to the photothermal effect. The amount of released ssDNA was dependent upon the power and exposure time of light irradiation. Release of ssDNA was also observed in tumors grown on mice after light irradiation. Such a controlled-release system of oligonucleotide triggered by the photothermal effect could expand the applications of gold nanorods that have unique optical characteristics in medicinal fields.  相似文献   
943.
Small interfering RNA (siRNA) has great therapeutic potential for the suppression of proteins associated with disease, but delivery methods are needed for improved efficacy. Here, we investigated the properties of micellar siRNA delivery vehicles prepared with poly(ethylene glycol)-block-poly(l-lysine) (PEG-b-PLL) comprising lysine amines modified to contain amidine and thiol functionality. Lysine modification was achieved using 2-iminothiolane (2-IT) [yielding PEG-b-PLL(N2IM-IM)] or dimethyl 3,3'-dithiobispropionimidate (DTBP) [yielding PEG-b-PLL(MPA)], with modifications aimed to impart disulfide cross-linking ability without compromising cationic charge. These two lysine modification reagents resulted in vastly different chemistry contained in the reacted block copolymer, which affected micelle formation behavior and stability along with in vitro and in vivo performance. Amidines formed with 2-IT were unstable and rearranged into a noncharged ring structure lacking free thiol functionality, whereas amidines generated with DTBP were stable. Micelles formed with siRNA and PEG-b-PLL(N2IM-IM) at higher molar ratios of polymer/siRNA, while PEG-b-PLL(MPA) produced micelles only near stoichiometric molar ratios. In vitro gene silencing was highest for PEG-b-PLL(MPA)/siRNA micelles, which were also more sensitive to disruption under disulfide-reducing conditions. Blood circulation was most improved for PEG-b-PLL(N2IM-IM)/siRNA micelles, with a circulation half-life 3× longer than naked siRNA. Both micelle formulations are promising for siRNA delivery applications in vitro and in vivo.  相似文献   
944.
Glycyrrhizin, a triterpenoid saponin derived from the underground parts of Glycyrrhiza plants (licorice), has several pharmacological activities and is also used worldwide as a natural sweetener. The biosynthesis of glycyrrhizin involves the initial cyclization of 2,3-oxidosqualene to the triterpene skeleton β-amyrin, followed by a series of oxidative reactions at positions C-11 and C-30, and glycosyl transfers to the C-3 hydroxyl group. We previously reported the identification of a cytochrome P450 monooxygenase (P450) gene encoding β-amyrin 11-oxidase (CYP88D6) as the initial P450 gene in glycyrrhizin biosynthesis. In this study, a second relevant P450 (CYP72A154) was identified and shown to be responsible for C-30 oxidation in the glycyrrhizin pathway. CYP72A154 expressed in an engineered yeast strain that endogenously produces 11-oxo-β-amyrin (a possible biosynthetic intermediate between β-amyrin and glycyrrhizin) catalyzed three sequential oxidation steps at C-30 of 11-oxo-β-amyrin supplied in situ to produce glycyrrhetinic acid, a glycyrrhizin aglycone. Furthermore, CYP72A63 of Medicago truncatula, which has high sequence similarity to CYP72A154, was able to catalyze C-30 oxidation of β-amyrin. These results reveal a function of CYP72A subfamily proteins as triterpene-oxidizing enzymes and provide a genetic tool for engineering the production of glycyrrhizin.  相似文献   
945.
p27kip1 has been implicated in cell cycle regulation, functioning as an inhibitor of cyclin-dependent kinase activity. In addition, p27 was also shown to affect cell migration, with accumulation of cytoplasmic p27 associated with tumor invasiveness. However, the mechanism underlying p27 regulation as a cytoplasmic protein is poorly understood. Here we show that glucose starvation induces proteasome-dependent degradation of cytoplasmic p27, accompanied by a decrease in cell motility. We also show that the glucose limitation-induced p27 degradation is regulated through an ubiquitin E3 ligase complex involving Siah1 and SIP/CacyBP. SIP−/− embryonic fibroblasts have increased levels of cytosolic p27 and exhibit increased cell motility compared with wild-type cells. These observations suggest that the Siah1/SIP E3 ligase complex regulates cell motility through degradation of p27.Key words: p27kip1, Siah1, SIP, glucose starvation, cell migration  相似文献   
946.
We examined whether a hyperthermophilic microbial fuel cell (MFC) would be technically feasible. Two-chamber MFC reactors were inoculated with subsurface microorganisms indigenous to formation water from a petroleum reservoir and were started up at operating temperature 80 °C. The MFC generated a maximum current of 1.3 mA 45 h after the inoculation. Performance of the MFC improved with an increase in the operating temperature; the best performance was achieved at 95 °C with the maximum power density of 165 mWm?2, which was approximately fourfold higher than that at 75 °C. Thus, to our knowledge, our study is the first to demonstrate generation of electricity in a hyperthermophilic MFC (operating temperature as high as 95 °C). Scanning electron microscopy showed that filamentous microbial cells were attached on the anode surface. The anodic microbial consortium showed limited phylogenetic diversity and primarily consisted of hyperthermophilic bacteria closely related to Caldanaerobacter subterraneus and Thermodesulfobacterium commune.  相似文献   
947.
The alkaline proteinase of Aspergillus sojae was isolated in gram quantities as a homogeneous form. The purification procedures were, (1) batchwise-treatment with ion exchange resin Duolite CS 101, (2) fractional precipitation with ammonium sulfate, (3) precipitation with acetone, (4) column chromatography on DEAE-cellulose, and (5) gel filtration with Sephadex G-100. The recovery of the activity was about 12%. The purified enzyme preparation was found to be homogeneous by several criteria such as ultracentrifugation, paper and moving-boundary electrophoreses, etc. Any kinds of carbohydrate and phosphorus were not detected in this preparation, suggesting that this enzyme is a simple protein.  相似文献   
948.
3-Alkyloxy and 3-amino phthalic acid derivatives were found to have metallo-β-lactamase inhibitory activity. Among them, 3-amino phthalic acid derivatives showed both potent activity against metallo-β-lactamase, IMP-1 inhibitory activity and a strong combination effect with biapenem (BIPM), carbapenem antibiotic. In particular, the 4′-hydroxy-piperidine derivative showed strong IMP-1 inhibitory activity and a combination effect with various antibiotics.  相似文献   
949.
The recombinant proteins with strong antimicrobial activity are known to be very difficult to express using bacterial expression system. Here, human β-defensin (DEFB) 1, DEFB2, and DEFB3 were successfully produced using a silkworm–baculovirus protein expression system. We have generated four baculoviruses for each DEFB protein to compare the effect of different peptide tags in secretion into silkworm larval hemolymph. Interestingly, the best performing peptide tags for the secretion were different among DEFBs: C-terminal GST-H8 tag for DEFB1, N-terminal H8 tag for DEFB2, and C-terminal H8 tag for DEFB3, respectively. In addition, the colony count assay demonstrated that the recombinant DEFB2 s showed antimicrobial activities against Escherichia coli, Pseudomonas aeruginosa, and Paenibacillus thiaminolyticus.  相似文献   
950.
This study examined the hypothesis that different inorganic carbon (IC) conditions enrich different ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) populations by operating two laboratory-scale continuous-flow bioreactors fed with 15 and 100 mg IC/L, respectively. During this study, both bioreactors maintained satisfactory nitrification performance and stably oxidized 250 mg?N/L of influent ammonium without nitrite accumulation. Based on results of cloning/sequencing and terminal restriction fragment length polymorphism targeting on the ammonia monooxygenase subunit A (amoA) gene, Nitrosomonas nitrosa lineage was identified as the dominant AOB population in the high-IC bioreactor, while Nitrosomonas europaea and Nitrosomonas nitrosa lineage AOB were dominant in the low-IC bioreactor. Results of real-time polymerase chain reactions for Nitrobacter and Nitrospira 16S rRNA genes indicated that Nitrospira was the predominant NOB population in the high-IC bioreactor, while Nitrobacter was the dominant NOB in the low-IC bioreactor. Furthermore, batch experiment results suggest that N. europaea and Nitrobacter populations are proliferated in the low-IC bioreactor due to their higher rates under low IC conditions despite the fact that these two populations have been identified as weak competitors, compared with N. nitrosa and Nitrospira, under low ammonium/nitrite environments. This study revealed that in addition to ammonium/nitrite concentrations, limited IC conditions may also be important in selecting dominant AOB/NOB communities of nitrifying bioreactors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号