全文获取类型
收费全文 | 1578篇 |
免费 | 140篇 |
国内免费 | 3篇 |
专业分类
1721篇 |
出版年
2024年 | 2篇 |
2023年 | 19篇 |
2022年 | 58篇 |
2021年 | 102篇 |
2020年 | 99篇 |
2019年 | 187篇 |
2018年 | 138篇 |
2017年 | 96篇 |
2016年 | 88篇 |
2015年 | 81篇 |
2014年 | 85篇 |
2013年 | 138篇 |
2012年 | 135篇 |
2011年 | 115篇 |
2010年 | 68篇 |
2009年 | 57篇 |
2008年 | 52篇 |
2007年 | 48篇 |
2006年 | 35篇 |
2005年 | 21篇 |
2004年 | 29篇 |
2003年 | 15篇 |
2002年 | 11篇 |
2001年 | 7篇 |
2000年 | 4篇 |
1999年 | 3篇 |
1998年 | 5篇 |
1997年 | 2篇 |
1996年 | 3篇 |
1994年 | 3篇 |
1993年 | 2篇 |
1990年 | 3篇 |
1989年 | 1篇 |
1988年 | 6篇 |
1987年 | 1篇 |
1985年 | 1篇 |
1984年 | 1篇 |
排序方式: 共有1721条查询结果,搜索用时 31 毫秒
81.
Seyede Saba Hosseini Seyed Omar Ebrahimi Maryam Haji Ghasem Kashani Somayeh Reiisi 《Cell biology international》2023,47(1):98-109
Naturally-derived drugs have drawn much attention in recent decades. Efficiency, lower toxicity, and economic reasons are some of their advantages that justify this broad range of administration for different diseases, including cancer. If we can find a specific combination that boosts the effects of their single therapy, leading to synergism effect, increased efficiency, and decreased toxicity, they can act even better. Quercetin and fisetin, two well-known flavonoids, have been used to fight against various cancers. In this study, we investigated their possible synergism quercetin and fisetin on MCF7, MDA-MB-231, BT549, T47D, and 4T1 breast cancer cell lines. Then the optimum combined dose was used to study their impacts on wound healing abilities and clonogenic properties. The real-time qPCR was used to study the expression of their validated downstream effectors in predicted pathways. A significant synergism effect (p < .01, combination index: <1) was observed for all cell lines. Combination therapy was significantly more effective in colony formation (p < .0001) and wound healing assays (p < .001) compared to single therapies. The expression level of potential effectors was also showed a greater change. In vivo study confirmed the in vitro results and showed how significantly (p < .001) their synergism promotes their singular function in inhibiting cancer progression. The breast cancer mouse models receiving combined therapy lived longer with higher average body weight and smaller tumor sizes. These results exhibit that quercetin and fisetin inhibit cancer cell proliferation, migration and colony formation synergistically, and matrix metalloproteinase signaling and apoptotic pathways are relatively responsible for inhibitory activities. 相似文献
82.
Non‐additive stabilization by halogenated amino acids reveals protein plasticity on a sub‐angstrom scale 下载免费PDF全文
Azade S. Hosseini Christopher J. Pace Adam A. Esposito Jianmin Gao 《Protein science : a publication of the Protein Society》2017,26(10):2051-2058
It has been a long‐standing goal to understand the structure‐stability relationship of proteins, as optimal stability is essential for protein function and highly desirable for protein therapeutics. Halogenation has emerged as a minimally invasive strategy to probe the physical characteristics of proteins in solution, as well as enhance the structural stabilities of proteins for therapeutic applications. Although advances in synthetic chemistry and genetic code expansion have allowed for the rapid synthesis of proteins with diverse chemical sequences, much remains to be learned regarding the impact of these mutations on their structural integrity. In this contribution, we present a systematic study of three well‐folded model protein systems, in which their structural stabilities are assessed in response to various hydrogen‐to‐halogen atom mutations. Halogenation allows for the perturbation of proteins on a sub‐angstrom scale, offering unprecedented precision of protein engineering. The thermodynamic results from these model systems reveal that in certain cases, proteins can display modest steric tolerance to halogenation, yielding non‐additive consequences to protein stability. The observed sub‐angstrom sensitivity of protein stability highlights the delicate arrangement of a folded protein core structure. The stability data of various halogenated proteins presented herein should also provide guidelines for using halogenation as a strategy to improve the stability of protein therapeutics. 相似文献
83.
Mohammadi Salman Shafiee Maryam Faraji Seyed Nooreddin Rezaeian Mohsen Ghaffarian-Bahraman Ali 《Biometals》2022,35(4):711-728
BioMetals - Breast milk is a complete food for the development of the newborn, but it can also be an important route for environmental pollutants transmission to the infants. This study was aimed... 相似文献
84.
Behnam Khatabi Javad Gharechahi Mohammad Reza Ghaffari Dilin Liu Paul A. Haynes Matthew J. McKay Mehdi Mirzaei Ghasem Hosseini Salekdeh 《Proteomics》2019,19(16)
Beneficial microbes have a positive impact on the productivity and fitness of the host plant. A better understanding of the biological impacts and underlying mechanisms by which the host derives these benefits will help to address concerns around global food production and security. The recent development of omics‐based technologies has broadened our understanding of the molecular aspects of beneficial plant–microbe symbiosis. Specifically, proteomics has led to the identification and characterization of several novel symbiosis‐specific and symbiosis‐related proteins and post‐translational modifications that play a critical role in mediating symbiotic plant–microbe interactions and have helped assess the underlying molecular aspects of the symbiotic relationship. Integration of proteomic data with other “omics” data can provide valuable information to assess hypotheses regarding the underlying mechanism of symbiosis and help define the factors affecting the outcome of symbiosis. Herein, an update is provided on the current and potential applications of symbiosis‐based “omic” approaches to dissect different aspects of symbiotic plant interactions. The application of proteomics, metaproteomics, and secretomics as enabling approaches for the functional analysis of plant‐associated microbial communities is also discussed. 相似文献
85.
Seyyed Jaber Hosseini Zeinolabedin Tahmasebi-Sarvestani Ali Mokhtassi-Bidgoli Hamed Keshavarz Shahryar Kazemi Masoumeh Khalvandi Hematollah Pirdashti Seyyed Hamidreza Hashemi-Petroudi Silvana Nicola 《化学与生物多样性》2023,20(4):e202200247
Saline stress is responsible for significant reductions in the growth of plants, and it globally leads to limitations in the performance of crops, especially in drought-affected areas. However, a better understanding of the mechanisms involved in the resistance of plants to environmental stress can lead to a better plant breeding and selection of cultivars. Mint is one of the most important medicinal plants, and it has important properties for industry, and for the medicinal and pharmacy fields. The effects of salinity on the biochemical and enzymatic properties of 18 ecotypes of mint from six different species, that is, Mentha piperita, Mentha mozafariani, Mentha rotundifolia, Mentha spicata, Mentha pulegium and Mentha longifolia, have been examined in this study. The experimental results showed that salinity increased with increasing in stress integrity influenced the enzymatic properties, proline content, electrolyte leakage, and the hydrogen peroxide, malondialdehyde, and essential oil contents. Cluster analysis and principal component analysis were conducted, and they grouped the studied species on the basis of their biochemical characteristics. According to the obtained biplot results, M. piperita and M. rotundifolia showed better stress tolerance than the other varieties, and M. longifolia was identified as being salt sensitive. Generally, the results showed that H2O2 and malondialdehyde had a positive connection with each other and showed a reverse relationship with all the enzymatic and non-enzymatic antioxidants. Finally, it was found that the M. spicata, M. rotundifolia and M. piperita ecotypes could be used for future breeding projects to improve the salinity tolerance of other ecotypes. 相似文献
86.
Samin Hosseini Ed D. L. Schmidt Freek T. Bakker 《The Plant journal : for cell and molecular biology》2020,103(2):547-560
Receptor‐like kinases (RLKs) represent the largest group of cell surface receptors in plants. The monophyletic leucine‐rich repeat (LRR)‐RLK subfamily II is considered to contain the somatic embryogenesis receptor kinases (SERKs) and NSP‐interacting kinases known to be involved in developmental processes and cellular immunity in plants. There are only a few published studies on the phylogenetics of LRR‐RLKII; unfortunately these suffer from poor taxon/gene sampling. Hence, it is not clear how many and what main clades this family contains, let alone what structure–function relationships exist. We used 1342 protein sequences annotated as ‘SERK’ and ‘SERK‐like’ plus related sequences in order to estimate phylogeny within the LRR‐RLKII clade, using the nematode protein kinase Pelle as an outgroup. We reconstruct five main clades (LRR‐RLKII 1–5), in each of which the main pattern of land plant relationships re‐occurs, confirming previous hypotheses that duplication events happened in this gene subfamily prior to divergence among land plant lineages. We show that domain structures and intron–exon boundaries within the five clades are well conserved in evolution. Furthermore, phylogenetic patterns based on the separate LRR and kinase parts of LRR‐RLKs are incongruent: whereas the LRR part supports a LRR‐RLKII 2/3 sister group relationship, the kinase part supports clades 1/2. We infer that the kinase part includes few ‘radical’ amino acid changes compared with the LRR part. Finally, our results confirm that amino acids involved in each LRR‐RLKII–receptor complex interaction are located at N‐capping residues, and that the short amino acid motifs of this interaction domain are highly conserved throughout evolution within the five LRR‐RLKII clades. 相似文献
87.
Akram Mirzaei Sina Rashedi Mohammad Reza Akbari Fatemeh Khatami Seyed Mohammad Kazem Aghamir 《Journal of cellular and molecular medicine》2022,26(9):2728
Arsenic trioxide (ATO) and statins have been demonstrated to have anti‐neoplastic properties; however, the data regarding their combination therapy is limited. Thus, we aimed to study the effects of ATO, Simvastatin and their combination in proliferation, apoptosis and pathological angiogenesis in prostate cancer cell lines. The human prostate cell lines were treated with different concentrations of Simvastatin and ATO alone and combined to find effective doses and IC50 values. In addition, the percentage of apoptotic cells was evaluated by annexin/PI staining, and mRNA expression levels of the apoptotic gene, including OPN isoforms and VEGF, were investigated using real‐time PCR. Our data displayed that Simvastatin (12 and 8 μM in PC3 and LNCaP cell lines respectively), ATO (8 and 5 μM in PC3 and LNCaP cell lines respectively), and also their combination (12 μM Simvastatin and 8 μM ATO in PC3, 8 μM Simvastatin and 5 μM ATO in LNCaP cell lines respectively) significantly increased the percentage of apoptotic cells. Also, we showed that the combination therapy by Simvastatin and ATO increased cell apoptosis and inhibited cell proliferation, providing anti‐proliferative and anti‐angiogenic properties, possibly via downregulation of the expression of VEGF and OPN genes. These results provide new perceptions regarding the anticancer roles of ATO and statins’ combination therapy in prostate cancer. 相似文献
88.
Seyed Mohammad Hossein Tabatabaie Ganti Suryanarayana Murthy 《The International Journal of Life Cycle Assessment》2017,22(6):867-882
Purpose
The effect of regional factors on life cycle assessment (LCA) of camelina seed production and camelina methyl ester production was assessed in this study. While general conclusions from LCA studies point to lower environmental impacts of biofuels, it has been shown in many studies that the environmental impacts are dependent on location, production practices, and even local weather variations.Methods
A cradle-to-farm gate and well-to-pump approaches were used to conduct the LCA. To demonstrate the impact of agro-climatic and management factors (weather condition, soil characteristics, and management practices) on the overall emissions for four different regions including Corvallis, OR, Pendleton, OR, Pullman, WA, and Sheridan, WY, field emissions were simulated using the DeNitrification-DeComposition (DNDC) model. openLCA v.1.4.2 software was used to quantify the environmental impacts of camelina seed and camelina methyl ester production.Results and discussion
The results showed that greenhouse gas (GHG) emissions during camelina production in different regions vary between 49.39 and 472.51 kg CO2-eq./ha due to differences in agro-climatic and weather variations. The GHG emissions for 1 kg of camelina produced in Corvallis, Pendleton, Pullman, and Sheridan were 0.76 ± 11, 0.55 ± 10, 0.47 ± 18, and 1.26 ± 6 % kg CO2-eq., respectively. The GHG emissions for 1000 MJ of camelina biodiesel using camelina produced in Corvallis, Pendleton, Pullman, and Sheridan were 53.60 ± 5, 48.87 ± 5, 44.33 ± 7, and 78.88 ± 4 % kg CO2-eq., respectively. Other impact categories such as acidification and ecotoxicity for 1000 MJ of camelina biodiesel varied across the regions by 43 and 103 %, respectively.Conclusions
It can be concluded that process-based crop models such as DNDC in conjunction with Monte Carlo analysis are helpful tools to quantitatively estimate the influence of regional factors on field emissions which consequently can provide information about the expected variability in LCA results.89.
Parvaneh Naserzadeh Seyed Alireza Mortazavi Khadijeh Ashtari Ahmad Salimi Mehdi Farokhi Jalal Pourahmad 《Journal of biochemical and molecular toxicology》2018,32(6)
Silk fibroin nanoparticles (SFNPs) as a natural polymer have been utilized in biomedical applications such as suture, tissue engineering‐based scaffolds, and drug delivery carriers. Since there is little data regarding the toxicity effects on different cells and tissues, we aimed to determine the toxicity mechanisms of SFNPs on human lymphocytes and monocytes based on reliable methods. Our results showed that SFNPs (0.5, 1, and 2 mg/mL) induced oxidative stress via increasing reactive oxygen species production, mitochondrial membrane potential (?Ψ) collapse, which was correlated to cytochrome c release and Adenosine diphosphate (ADP)/Adenosine tri phosphate (ATP) ratio increase as well as lysosomal as another toxicity mechanism, which led to cytosolic release of lysosomal digestive proteases, phosphor lipases, and apoptosis signaling. Taken together, these data suggested that SFNPs toxicity was associated with mutual mitochondrial/lysosomal cross‐talk and oxidative stress on human lymphocytes and monocytes with activated apoptosis signaling. 相似文献
90.
Kheirandish Maryam Siadat Seyed Davar Norouzian Dariush Razavi Mohamad Reza Aghasadeghi Mohammad Reza Rezaei Nima Farazmand Ali Izadi Mobarakeh Jalal Zangeneh Mehrangiz Moshiri Arfa Sadat Seyed Mehdi Salmani Ali Sharifat 《Annals of microbiology》2009,59(4):801-806
Neisseria meningitidis is efficiently phagocytosed by polymorphonuclear leukocytes (PMNS) following opsonization with opsonic antibodies; opsonophagocytosis is the primary mechanism for clearance of meningococci from the host. Thus, in testing meningococcal vaccines, the level of opsonophagocytic antibodies appears to correlate with vaccine-induced protection. Our previous studies demonstrated that the conjugation ofN. meningitidis serogroup A capsular polysaccharide (CPSA) to serogroup B outer membrane vesicle (OMV) could induce a high level of bactericidal antibody response against serogroup A meningococci in animals. The purpose of this study was to evaluate opsonophagocytic activity of the conjugate of CPSA to OMV (CPSA-OMV). In order to evaluate the potential efficacy of CPSA-OMV a flow cytometric opsonophagocytic assay was used. The conjugate and controls were injected intramuscularly into four groups of rabbits with boosters on days 14, 28 and 42 following primary immunization. The rabbits were bled prior to injection and two weeks after each injection. Opsonophagocytic activity of antibodies in hyperimmune sera through rabbit PMNS were measured with flow cytometer, using dihydrorhodamine-123 as a probe. The results indicated that our conjugate could induce a highly significant level of opsonophagocytic activity against serogroup A meningococci after 56 days compared to the control groups (P<0.05). We conclude that this conjugate represents a vaccine candidate against serogroups A and B meningococci after further investigation. 相似文献