首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1444篇
  免费   79篇
  国内免费   1篇
  1524篇
  2024年   3篇
  2023年   16篇
  2022年   34篇
  2021年   61篇
  2020年   84篇
  2019年   129篇
  2018年   100篇
  2017年   75篇
  2016年   75篇
  2015年   74篇
  2014年   96篇
  2013年   136篇
  2012年   103篇
  2011年   114篇
  2010年   60篇
  2009年   68篇
  2008年   66篇
  2007年   55篇
  2006年   60篇
  2005年   33篇
  2004年   29篇
  2003年   16篇
  2002年   17篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1980年   3篇
  1968年   1篇
排序方式: 共有1524条查询结果,搜索用时 15 毫秒
81.
After determination of sorption isotherms of grape seeds using gravimetric method, five models with temperature effect were used to fit water sorption isotherms of grape seeds to investigate temperature effect on sorption isotherms and its thermodynamic characteristics. Halsey model had minimum mean relative percentage error (M e ) and all other models used were good in fitting experimental data (with M e of less than 10 %). Differential parameters such as net isosteric heat, isosteric heat, differential entropy and integral function such as equilibrium heat, net equilibrium heat, integral entropy and surface potential have been calculated. The net isosteric heat, isosteric heat and differential entropy decreased with moisture content. The net equilibrium enthalpy, equilibrium enthalpy and integral entropy decreased with moisture content. The surface potential at four temperatures (35, 45, 55 and 65 °C) was estimated, and low temperature effect was reported.  相似文献   
82.
83.
The unique viscoelastic nature of axons is thought to underlie selective vulnerability to damage during traumatic brain injury. In particular, dynamic loading of axons has been shown to mechanically break microtubules at the time of injury. However, the mechanism of this rate-dependent response has remained elusive. Here, we present a microstructural model of the axonal cytoskeleton to quantitatively elucidate the interaction between microtubules and tau proteins under mechanical loading. Mirroring the axon ultrastructure, the microtubules were arranged in staggered arrays, cross-linked by tau proteins. We found that the viscoelastic behavior specifically of tau proteins leads to mechanical breaking of microtubules at high strain rates, whereas extension of tau allows for reversible sliding of microtubules without any damage at small strain rates. Based on the stiffness and viscosity of tau proteins inferred from single-molecule force spectroscopy studies, we predict the critical strain rate for microtubule breaking to be in the range 22–44 s−1, in excellent agreement with recent experiments on dynamic loading of micropatterned neuronal cultures. We also identified a characteristic length scale for load transfer that depends on microstructural properties and have derived a phase diagram in the parameter space spanned by loading rate and microtubule length that demarcates those regions where axons can be loaded and unloaded reversibly and those where axons are injured due to breaking of the microtubules.  相似文献   
84.
Sequence-related amplified polymorphism (SRAP) was used to assess the genetic diversity of 63 cultivated, wild, and ornamental pomegranate genotypes from five different geographical regions of Iran. A total of 250 fragments were amplified using 13 primer combinations; among these, 133 bands (53?%) were polymorphic. The average PIC value was 0.28 over all PCs. The genetic distance among genotypes ranged from 0.10 to 0.37 with an average of 0.24. Cluster analysis using the neighbor-joining (NJ) method suggested there are close relationships between ornamental and some wild genotypes. Although AMOVA results revealed significant differences in the genetic diversity among the regions (P?=?0.0048), the genetic variation was mainly caused by variation of intra regions. The results indicated low genetic differentiation (Fst?=?0.025) and high gene flow (Nm?=?2.28) among regions. These results confirmed that SRAP markers could be powerful tools and an effective marker system for determining the genetic diversity and population genetic structure of the pomegranate.  相似文献   
85.
Due to their important biomedical applications, functional human embryonic stem cell-derived hepatocyte-like cells (hESC-HLCs) are an attractive topic in the field of stem cell differentiation. Here, we have initially differentiated hESCs into functional hepatic endoderm (HE) and continued the differentiation by replating them onto galactosylated collagen (GC) and collagen matrices. The differentiation of hESC-HE cells into HLCs on GC substrate showed significant up-regulation of hepatic-specific genes such as ALB, HNF4α, CYP3A4, G6P, and ASGR1. There was more albumin secretion and urea synthesis, as well as more cytochrome p450 activity, in differentiated HLCs on GC compared to the collagen-coated substrate. These results suggested that GC substrate has the potential to be used for in vitro maturation of hESC-HLCs.  相似文献   
86.
Laccases (benzenediol oxygen oxidoreductases, EC 1.10.3.2) are used in many biotechnological processes, including removal of polyphenols in beverages, decolorizing and detoxifying effluents, drug analysis and bioremediation. In the present work, we have tried to increase thermal stability of laccase from Bacillus HR03 using site directed point mutations. Glu188 was substituted with 2 positive (Lys and Arg) and one hydrophobic (Ala) residues. All mutations showed improved thermal stability. Thermal activation of laccase was also increased after introducing the mutations. Remarkably, the Glu188Lys variant showed 3-fold higher thermal activation and higher T50 (5 °C) with respect to the native enzyme. Furthermore steady-state kcat and Km values were influenced despite the distance between the mutated position and the catalytic site. In Glu188Arg mutation, the kcat was improved 3-fold and Km reduced by 25%. Interestingly, all three variants showed higher stability against urea as a chemical denaturant. Structural analyses of the native and mutated variants were carried out using fluorescence and far-UV circular dichroism.  相似文献   
87.
In vitro asymbiotic seed germination potential of its immature seeds (36 weeks after pollination) of G. calceolaris was successfully tested on three different agar gelled nutrient media i.e. Murashige and Skoog (MS), Mitra et al. (M) and potato dextrose agar (PDA). Seeds germinated within 15.75+/-0.75 to 35.75+/-0.75 days in the three different media. The protocorms developed therefrom subsequently differentiated into first leaf and root primordia, and complete seedlings were obtained within 111.25+/-1.25 to 141.25+/-1.25 days on MS and M media. The protocorms, though failed to differentiate further on basal PDA medium, despite repeated subculturings, incorporation of peptone (P; 1 gl(-1)), yeast extract (YE; 2 gl(-1)) and coconut water (CW; 20%) in the medium proved beneficial in inducing differentiation, in these germinating entities. Additional use of growth additives (P/YE/CW), in general, favoured better germination, protocorm formation and seedling development. The optimal nutritional combination during seed germination, protocorm growth and multiplication and seedling development was found to be CW (10%) enriched MS medium.  相似文献   
88.
The intracellular distribution of fluorescent-labeled polyamides was examined in live cells. We showed that BODIPY-labeled polyamides accumulate in acidic vesicles, mainly lysosomes, in the cytoplasm of HCT116 colon cancer cells and human rheumatoid synovial fibroblasts (RSF). Verapamil blocked vesicular accumulation and led to nuclear accumulation of the BODIPY-labeled polyamide in RSFs. We infer that the basic amine group commonly found at the end of synthetic polyamide chains is responsible for their accumulation in cytoplasmic vesicles in mammalian cells. Modifying the charge on a polyamide by replacing the BODIPY moiety with a fluorescein moiety on the amine tail allowed the polyamide to localize in the nucleus of the cell and bypass the cytoplasmic vesicles in HCT116 cells.  相似文献   
89.
The antimicrobial property of stabilized silver nanoparticles (AgNPs) with phospholipid membrane was investigated on both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacterial strains. The influence of phospholipid concentrations on antibacterial kinetics actions of AgNPs was studied with two different methodologies in order to understand the bactericidal and bacteriostatic effects. The bacterial inactivation of synthesized AgNPs fitted well to the Chick-Watson model with a high regression coefficient, R(2) > 0.91. The antibacterial properties of AgNPs depend on the particle size, stabilizer and lecithin concentrations. Only the stabilized AgNPs that have the K(lec/Ag) values of 1 and 2 presented the inhabitation zone, while unstabilized AgNPs agglomerated quickly, settled on the wells and did not diffuse in agar. In addition, the specific coefficient of lethality depends on the lecithin concentration. An increase in lecithin concentration caused multilayer creation on the AgNPs' surface and reduced the release of AgNPs which led to low bacterial killing rate.  相似文献   
90.
Hepatocellular carcinoma (HCC) is known as one of the major health problems worldwide. Pathological analysis indicated that a variety of risk factors including genetical (i.e., alteration of tumor suppressors and oncogenes) and environmental factors (i.e., viruses) are involved in beginning and development of HCC. The understanding of these risk factors could guide scientists and clinicians to design effective therapeutic options in HCC treatment. Various viruses such as hepatitis B virus (HBV) and hepatitis C virus (HCV) via targeting several cellular and molecular pathways involved in HCC pathogenesis. Among various cellular and molecular targets, microRNAs (miRNAs) have appeared as key players in HCC progression. miRNAs are short noncoding RNAs which could play important roles as oncogenes or tumor suppressors in several malignancies such as HCC. Deregulation of many miRNAs (i.e., miR-222, miR-25, miR-92a, miR-1, let-7f, and miR-21) could be associated with different stages of HCC. Besides miRNAs, exosomes are other particles which are involved in HCC pathogenesis via targeting different cargos, such as DNAs, RNAs, miRNAs, and proteins. In this review, we summarize the current knowledge of the role of miRNAs and exosomes as important players in HCC pathogenesis. Moreover, we highlighted HCV- and HBV-related miRNAs which led to HCC progression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号