排序方式: 共有45条查询结果,搜索用时 0 毫秒
41.
Lindsay Y. King Kara B. Johnson Hui Zheng Lan Wei Thomas Gudewicz Yujin Hoshida Kathleen E. Corey Tokunbo Ajayi Nneka Ufere Thomas F. Baumert Andrew T. Chan Kenneth K. Tanabe Bryan C. Fuchs Raymond T. Chung 《PloS one》2014,9(12)
Single nucleotide polymorphisms (SNPs) in the epidermal growth factor (EGF, rs4444903), patatin-like phospholipase domain-containing protein 3 (PNPLA3, rs738409) genes, and near the interleukin-28B (IL28B, rs12979860) gene are linked to treatment response, fibrosis, and hepatocellular carcinoma (HCC) in chronic hepatitis C. Whether these SNPs independently or in combination predict clinical deterioration in hepatitis C virus (HCV)-related cirrhosis is unknown. We genotyped SNPs in EGF, PNPLA3, and IL28B from liver tissue from 169 patients with biopsy-proven HCV cirrhosis. We estimated risk of clinical deterioration, defined as development of ascites, encephalopathy, variceal hemorrhage, HCC, or liver-related death using Cox proportional hazards modeling. During a median follow-up of 6.6 years, 66 of 169 patients experienced clinical deterioration. EGF non-AA, PNPLA3 non-CC, and IL28B non-CC genotypes were each associated with increased risk of clinical deterioration in age, sex, and race-adjusted analysis. Only EGF non-AA genotype was independently associated with increased risk of clinical deterioration (hazard ratio [HR] 2.87; 95% confidence interval [CI] 1.31–6.25) after additionally adjusting for bilirubin, albumin, and platelets. Compared to subjects who had 0–1 unfavorable genotypes, the HR for clinical deterioration was 1.79 (95%CI 0.96–3.35) for 2 unfavorable genotypes and 4.03 (95%CI 2.13–7.62) for unfavorable genotypes for all three loci (Ptrend<0.0001). In conclusion, among HCV cirrhotics, EGF non-AA genotype is independently associated with increased risk for clinical deterioration. Specific PNPLA3 and IL28B genotypes also appear to be associated with clinical deterioration. These SNPs have potential to identify patients with HCV-related cirrhosis who require more intensive monitoring for decompensation or future therapies preventing disease progression. 相似文献
42.
Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase 总被引:26,自引:0,他引:26
Hoshida H Tanaka Y Hibino T Hayashi Y Tanaka A Takabe T Takabe T 《Plant molecular biology》2000,43(1):103-111
The potential role of photorespiration in the protection against salt stress was examined with transgenic rice plants. Oryza sativa L. cv. Kinuhikari was transformed with a chloroplastic glutamine synthetase (GS2) gene from rice. Each transgenic rice plant line showed a different accumulation level of GS2. A transgenic plant line, G39-2, which accumulated about 1.5-fold more GS2 than the control plant, had an increased photorespiration capacity. In another line, G241-12, GS2 was almost lost and photorespiration activity could not be detected. Fluorescence quenching analysis revealed that photorespiration could prevent the over-reduction of electron transport systems. When exposed to 150 mM NaCl for 2 weeks, the control rice plants completely lost photosystem II activity, but G39-2 plants retained more than 90% activity after the 2-week treatment, whereas G241-12 plants lost these activities within one week. In the presence of isonicotinic acid hydrazide, an inhibitor of photorespiration, G39-2 showed the same salt tolerance as the control plants. The intracellular contents of NH4
+ and Na+ in the stressed plants correlated well with the levels of GS2. Thus, the enhancement of photorespiration conferred resistance to salt in rice plants. Preliminary results suggest chilling tolerance in the transformant. 相似文献
43.
Xu L Shen SS Hoshida Y Subramanian A Ross K Brunet JP Wagner SN Ramaswamy S Mesirov JP Hynes RO 《Molecular cancer research : MCR》2008,6(5):760-769
Metastasis is the deadliest phase of cancer progression. Experimental models using immunodeficient mice have been used to gain insights into the mechanisms of metastasis. We report here the identification of a "metastasis aggressiveness gene expression signature" derived using human melanoma cells selected based on their metastatic potentials in a xenotransplant metastasis model. Comparison with expression data from human melanoma patients shows that this metastasis gene signature correlates with the aggressiveness of melanoma metastases in human patients. Many genes encoding secreted and membrane proteins are included in the signature, suggesting the importance of tumor-microenvironment interactions during metastasis. 相似文献
44.