首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   309篇
  免费   29篇
  2023年   3篇
  2022年   11篇
  2021年   17篇
  2020年   14篇
  2019年   21篇
  2018年   19篇
  2017年   7篇
  2016年   20篇
  2015年   15篇
  2014年   21篇
  2013年   24篇
  2012年   17篇
  2011年   8篇
  2010年   12篇
  2009年   13篇
  2008年   4篇
  2007年   12篇
  2006年   11篇
  2005年   12篇
  2004年   5篇
  2003年   7篇
  2002年   8篇
  2001年   4篇
  2000年   5篇
  1999年   4篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1977年   2篇
  1974年   2篇
  1971年   1篇
  1967年   2篇
  1966年   5篇
  1965年   1篇
  1962年   1篇
排序方式: 共有338条查询结果,搜索用时 15 毫秒
101.

Salinity is a major environmental stress that limits plant production and portraits a critical challenge to food security in the world. In this research, the impacts of plant growth–promoting bacteria (Pseudomonas RS-198 and Azospirillum brasilense RS-SP7) and foliar application of plant hormones (salicylic acid 1 mM and jasmonic acid 0.5 mM) on alleviating the harmful effects of salt stress in rapeseed plants (Brassica napus cv. okapi) were examined under greenhouse condition. Salt stress diminished rapeseed biomass, leaf area, water content, nitrogen, phosphorus, potassium, calcium, magnesium, and chlorophyll content, while it increased sodium content, endogenous salicylic and jasmonic acids, osmolyte production, H2O2 and O2•− generations, TBARS content, and antioxidant enzyme activities. Plant growth, nutrient content, leaf expansion, osmolyte production, and antioxidant enzyme activities were increased, but oxidative and osmotic stress indicators were decreased by bacteria inoculation + salicylic acid under salt stress. Antioxidant enzyme activities were amplified by jasmonic acid treatments under salt stress, although rapeseed growth was not generally affected by jasmonic acid. Bacterial + hormonal treatments were superior to individual treatments in reducing detrimental effects of salt stress. The best treatment in rectifying rapeseed growth under salt stress was combination of Pseudomonas and salicylic acid. This combination attenuated destructive salinity properties and subsequently amended rapeseed growth via enhancing endogenous salicylic acid content and some essential nutrients such as potassium, phosphorus, and magnesium.

  相似文献   
102.
An electrochemical impedimetric immunosensor was developed for ultrasensitive determination of insulin-like growth factor-1 (IGF-1) based on immobilization of a specific monoclonal antibody on gold nanoparticles (GNPs) modified gold electrode. Self-assembly of colloidal gold nanoparticles on the gold electrode was conducted through the thiol groups of 1,6-hexanedithiol (HDT) monolayer as a cross linker. The redox reactions of [Fe(CN)(6)](4-)/[Fe(CN)(6)](3-) on the electrode surface was probed for studying the immobilization and determination processes, using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The interaction of antigen with grafted antibody recognition layer was carried out by soaking the modified electrode into antigen solution at 37°C for 3 h. The immunosensor showed linearity over 1.0-180.0 pg mL(-1) and the limit of detection was 0.15 pg mL(-1). The association constant between IGF-1 and immobilized antibody was calculated to be 9.17×10(11) M(-1). The proposed method is a useful tool for screening picogram amounts of IGF-1 in clinical laboratory as a diagnostic test.  相似文献   
103.
Microbiological safety has been a critical issue for acid and acidified foods since it became clear that acid-tolerant pathogens such as Escherichia coli O157:H7 can survive (even though they are unable to grow) in a pH range of 3 to 4, which is typical for these classes of food products. The primary antimicrobial compounds in these products are acetic acid and NaCl, which can alter the intracellular physiology of E. coli O157:H7, leading to cell death. For combinations of acetic acid and NaCl at pH 3.2 (a pH value typical for non-heat-processed acidified vegetables), survival curves were described by using a Weibull model. The data revealed a protective effect of NaCl concentration on cell survival for selected acetic acid concentrations. The intracellular pH of an E. coli O157:H7 strain exposed to acetic acid concentrations of up to 40 mM and NaCl concentrations between 2 and 4% was determined. A reduction in the intracellular pH was observed for increasing acetic acid concentrations with an external pH of 3.2. Comparing intracellular pH with Weibull model predictions showed that decreases in intracellular pH were significantly correlated with the corresponding times required to achieve a 5-log reduction in the number of bacteria.  相似文献   
104.
105.
106.
Histamine is a well known amine which controls many physiological functions of the CNS, including fluid balance, appetite, thermoregulation, cardiovascular control, learning and the stress response. All these functions are mediated via three well known membrane receptors (H1, H2 and H3) and, in laboratory animals, feeding behavior is under the control of H1 type. In order to investigate the central effect of histamine on feeding behavior in sheep and the characterization of the receptor involved, two Latin square design experiments were undertaken using four Iranian Nainee rams implanted with intracerebroventricular cannulae. In the first experiment, 12 h fasted (7:00 p.m.–7:00 a.m.) rams in individual pens were infused with 0 (control), 100, 400 and 800 nM of histamine such that each ram received each dose four times on different days. Ten minutes after injection (7:00 a.m.) water and a food container were put in the pens and the consumption of water and food were recorded at 0.5, 1, 3 and 12 h. Results from this experiment revealed that histamine significantly (P < 0.01) suppressed food intake with no effect on water consumption. In the second experiment the use of three specific histamine antagonists: chloropheniramine, ranitidine and thioperamide, showed that the anorexic effect of histamine was significantly (P < 0.01) blocked by chloropheniramine. It is concluded that feeding behavior in sheep is inhibited by histamine acting via H1 receptors.  相似文献   
107.
Calpastatin has been introduced as a potential candidate gene for growth and meat quality traits. In this study, genetic variability was investigated in the exon 6 and its intron boundaries of ovine CAST gene by PCR-SSCP analysis and DNA sequencing. Also a protein sequence and structural analysis were performed to predict the possible impact of amino acid substitutions on physicochemical properties and structure of the CAST protein. A total of 487 animals belonging to four ancient Iranian sheep breeds with different fat metabolisms, Lori-Bakhtiari and Chall (fat-tailed), Zel-Atabay cross-bred (medium fat-tailed) and Zel (thin-tailed), were analyzed. Eight unique SSCP patterns, representing eight different sequences or haplotypes, CAST-1, CAST-2 and CAST-6 to CAST-11, were identified. Haplotypes CAST-1 and CAST-2 were most common with frequency of 0.365 and 0.295. The novel haplotype CAST-8 had considerable frequency in Iranian sheep breeds (0.129). All the consensus sequences showed 98–99%, 94–98%, 92–93% and 82–83% similarity to the published ovine, caprine, bovine and porcine CAST locus sequences, respectively. Sequence analysis revealed four SNPs in intron 5 (C24T, G62A, G65T and T69-) and three SNPs in exon 6 (c.197A > T, c.282G > T and c.296C > G). All three SNPs in exon 6 were missense mutations which would result in p.Gln 66 Leu, p.Glu 94 Asp and p.Pro 99 Arg substitutions, respectively, in CAST protein. All three amino acid substitutions affected the physicochemical properties of ovine CAST protein including hydrophobicity, amphiphilicity and net charge and subsequently might influence its structure and effect on the activity of Ca2 + channels; hence, they might regulate calpain activity and afterwards meat tenderness and growth rate. The Lori-Bakhtiari population showed the highest heterozygosity in the ovine CAST locus (0.802). Frequency difference of haplotypes CAST-10 and CAST-8 between Lori-Bakhtiari (fat-tailed) and Zel (thin-tailed) breeds was highly significant (P < 0.001), indicating that these two haplotypes might be breed-specific haplotypes that distinguish between fat-tailed and thin-tailed sheep breeds.  相似文献   
108.
109.
Previously, using primary hepatocytes residing in early G(1) phase, we demonstrated that expression of the cyclin-dependent kinase (CDK) inhibitor protein p21(Cip-1/WAF1/mda6) (p21) enhanced the toxicity of deoxycholic acid (DCA) + MEK1/2 inhibitor. This study examined the mechanisms regulating this apoptotic process. Overexpression of p21 or p27(Kip-1) (p27) enhanced DCA + MEK1/2 inhibitor toxicity in primary hepatocytes that was dependent on expression of acidic sphingomyelinase and CD95. Overexpression of p21 suppressed MDM2, elevated p53 levels, and enhanced CD95, BAX, NOXA, and PUMA expression; knockdown of BAX/NOXA/PUMA reduced CDK inhibitor-stimulated cell killing. Parallel to cell death processes, overexpression of p21 or p27 profoundly enhanced DCA + MEK1/2 inhibitor-induced expression of ATG5 and GRP78/BiP and phosphorylation of PKR-like endoplasmic reticulum kinase (PERK) and eIF2alpha, and it increased the numbers of vesicles containing a transfected LC3-GFP construct. Incubation of cells with 3-methyladenine or knockdown of ATG5 suppressed DCA + MEK1/2 inhibitor-induced LC3-GFP vesicularization and enhanced DCA + MEK1/2 inhibitor-induced toxicity. Expression of dominant negative PERK blocked DCA + MEK1/2 inhibitor-induced expression of ATG5, GRP78/BiP, and eIF2alpha phosphorylation and prevented LC3-GFP vesicularization. Knock-out or knockdown of p53 or CD95 abolished DCA + MEK1/2 inhibitor-induced PERK phosphorylation and prevented LC3-GFP vesicularization. Thus, CDK inhibitors suppress MDM2 levels and enhance p53 expression that facilitates bile acid-induced, ceramide-dependent CD95 activation to induce both apoptosis and autophagy in primary hepatocytes.  相似文献   
110.
Proteins of halophilic organisms, which accumulate molar concentrations of KCl in their cytoplasm, have a much higher content in acidic amino acids than proteins of mesophilic organisms. It has been proposed that this excess is necessary to maintain proteins hydrated in an environment with low water activity, either via direct interactions between water and the carboxylate groups of acidic amino acids or via cooperative interactions between acidic amino acids and hydrated cations. Our simulation study of five halophilic proteins and five mesophilic counterparts does not support either possibility. The simulations use the AMBER ff14SB force field with newly optimized Lennard-Jones parameters for the interactions between carboxylate groups and potassium ions. We find that proteins with a larger fraction of acidic amino acids indeed have higher hydration levels, as measured by the concentration of water in their hydration shell and the number of water/protein hydrogen bonds. However, the hydration level of each protein is identical at low (bKCl = 0.15 mol/kg) and high (bKCl = 2 mol/kg) KCl concentrations; excess acidic amino acids are clearly not necessary to maintain proteins hydrated at high salt concentration. It has also been proposed that cooperative interactions between acidic amino acids in halophilic proteins and hydrated cations stabilize the folded protein structure and would lead to slower dynamics of the solvation shell. We find that the translational dynamics of the solvation shell is barely distinguishable between halophilic and mesophilic proteins; if such a cooperative effect exists, it does not have that entropic signature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号