首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   301篇
  免费   23篇
  国内免费   1篇
  325篇
  2024年   3篇
  2023年   5篇
  2022年   10篇
  2021年   12篇
  2020年   18篇
  2019年   34篇
  2018年   20篇
  2017年   9篇
  2016年   17篇
  2015年   14篇
  2014年   24篇
  2013年   31篇
  2012年   21篇
  2011年   15篇
  2010年   16篇
  2009年   11篇
  2008年   4篇
  2007年   7篇
  2006年   7篇
  2005年   8篇
  2004年   1篇
  2003年   4篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1991年   1篇
  1986年   2篇
  1983年   2篇
  1981年   2篇
  1980年   2篇
  1977年   3篇
  1974年   2篇
  1971年   1篇
  1967年   2篇
  1966年   5篇
  1965年   1篇
  1962年   1篇
排序方式: 共有325条查询结果,搜索用时 15 毫秒
81.
Moradi F  Ismail AM 《Annals of botany》2007,99(6):1161-1173
BACKGROUND AND AIMS: Salinity is a widespread soil problem limiting productivity of cereal crops worldwide. Rice is particularly sensitive to salt stress during the seedling stage, with consequent poor crop establishment, as well as during reproduction where salinity can severely disrupt grain formation and yield. Tolerance at the seedling stage is weakly associated with tolerance during reproduction. Physiological responses to salinity were evaluated for contrasting genotypes, during the seedling and reproductive stages. METHODS: Three rice genotypes differing in their tolerance of salinity were evaluated in a set of greenhouse experiments under salt stress during both seedling stage and reproduction. KEY RESULTS: Photosynthetic CO2 fixation, stomatal conductance (gs) and transpiration decreased substantially because of salt stress, but with greater reduction in the sensitive cultivar IR29. The tolerant lines IR651 and IR632 had more responsive stomata that tended to close faster during the first few hours of stress, followed by partial recovery after a brief period of acclimation. However, in the sensitive line, gs continued to decrease for longer duration and with no recovery afterward. Chlorophyll fluorescence measurements revealed that non-photochemical quenching increased, whereas the electron transport rate decreased under salt stress. Salt-tolerant cultivars exhibited much lower lipid peroxidation, maintained elevated levels of reduced ascorbic acid and showed increased activities of the enzymes involved in the reactive oxygen scavenging system during both developmental stages. CONCLUSIONS: Upregulation of the anti-oxidant system appears to play a role in salt tolerance of rice, with tolerant genotypes also maintaining relatively higher photosynthetic function; during both the vegetative and reproductive stages.  相似文献   
82.
83.
Here, we have investigated the therapeutic potency of EW-7197, a transforming growth factor-β type I receptor kinase inhibitor, against postsurgical adhesion band formation. Our results showed that this pharmacological inhibitor prevented the frequency and the stability of adhesion bands in mice model. We have also shown that downregulation of proinflammatory cytokines, reduce submucosal edema, attenuation of proinflammatory cell infiltration, inhibition of oxidative stress, decrease in excessive collagen deposition, and suppression of profibrotic genes at the site of surgery are some of the mechanisms by which EW-7197 elicits its protective responses against adhesion band formation. These results clearly suggest that EW-7197 has novel therapeutic properties against postsurgical adhesion band formation with clinically translational potential of inhibiting key pathological responses of inflammation and fibrosis in postsurgery patients.  相似文献   
84.
Diabetes is a common metabolic disorder characterized by elevated blood glucose level. Trace element homeostasis causes disturbances in diabetes due to hyperglycemia. Superoxide dismutase (SOD), an antioxidant enzyme, contains zinc and copper ions as its cofactors. Defects in SOD level and activity have been observed in diabetes. Resveratrol (RSV) has displayed hypoglycemic effects and is proven to improve oxidative stress. The aim of the present study was to examine the possible effects of RSV on blood glucose level, serum copper and zinc levels, SOD, and a number of other oxidative markers in type 2 diabetic rats. Diabetes was induced in male Wistar rats with administration of streptozotocin and nicotine amide. The studied groups containing six animals per group were as follows: group 1 normal control group; group 2 diabetic control group; groups 3, 4, and 5 diabetic rats that received 1, 5, and 10 mg/kg body weight of RSV, respectively for 30 days. Serum glucose, copper, zinc, SOD activity, total oxidant status (TOS) as well as thiol groups were all measured. Blood glucose in RSV treated groups significantly decreased. Similarly, copper significantly decreased in diabetic groups treated with RSV. Treatment with 10 mg/kg RSV resulted in significantly increased serum zinc. Furthermore, Cu/Zn ratio was observed to decrease in treated groups compared with untreated diabetic control group. RSV treated groups revealed an increased level of SOD activity as well as improved oxidative status. In summary, the results showed that RSV has potential hypoglycemic effect, attenuates trace element homeostasis, and consequently increases SOD activity level.  相似文献   
85.

Background

Well documented diversity in risk of developing overweight and obesity between children of immigrant and of native mothers, might be explained by different body mass index (BMI) development trajectories in relation to maternal and perinatal characteristics of offspring.

Objectives

To assess BMI development trajectories among children born to immigrant and to Swedish mothers from birth to adolescence in relation to perinatal characteristics.

Methods

A cohort of 2517 children born in Stockholm during 1994 to 1996 was followed with repeated measurement of height and weight at eleven time points until age 12 years. We estimated changes over time for BMI in relation to maternal and perinatal characteristics of offspring using mixed linear model analysis for repeated measure data.

Results

We observed a significant BMI change over time in children and time interaction with maternal migration status (P<0.0001). Estimated BMI over time adjusted for maternal and perinatal characteristics of offspring, showed slower BMI growth before age of 5, followed by an earlier plateau and steeper BMI growth after 5 years among children of immigrant mothers compared with children of Swedish mothers. These differences in BMI growth were more prominent among children with mothers from outside Europe.

Conclusion

Beside reinforcing early childhood as a crucial period in development of overweight, the observed slower BMI development at early childhood among children of immigrants followed by a steeper increase in BMI compared with children of Swedish mothers is important for further studies and for planning of preventive public health programs.  相似文献   
86.
Since its discovery in 1979, left-handed Z-DNA has evolved from an in vitro curiosity to a challenging DNA structure with crucial roles in gene expression, regulation and recombination. A fundamental question that has puzzled researchers for decades is how the transition from B-DNA, the prevalent right-handed form of DNA, to Z-DNA is accomplished. Due to the complexity of the B–Z-DNA transition, experimental and computational studies have resulted in several different, apparently contradictory models. Here, we use molecular dynamics simulations coupled with state-of-the-art enhanced sampling techniques operating through non-conventional reaction coordinates, to investigate the B–Z-DNA transition at the atomic level. Our results show a complex free energy landscape, where several phenomena such as over-stretching, unpeeling, base pair extrusion and base pair flipping are observed resulting in interconversions between different DNA conformations such as B-DNA, Z-DNA and S-DNA. In particular, different minimum free energy paths allow for the coexistence of different mechanisms (such as zipper and stretch–collapse mechanisms) that previously had been proposed as independent, disconnected models. We find that the B–Z-DNA transition—in absence of other molecular partners—can encompass more than one mechanism of comparable free energy, and is therefore better described in terms of a reaction path ensemble.  相似文献   
87.
Background:MicroRNA expression signature and reactive oxygen species (ROS) production have been associated with the development of cardiovascular diseases (CVDs). This study aimed to evaluate oxidative stress, inflammation, apoptosis, and the expression of miRNA-208a and miRNA-1 in cardiovascular patients.Methods:The study population included four types of patients (acute coronary syndromes (ACS), myocardial infarction (MI), arrhythmia, and heart failure (HF)), with 10 people in each group, as well as a control group. Quantitative real-time PCR was performed to measure mir-208 and miR-1 expression, the mRNAs of inflammatory mediators (TNFα, iNOS/eNOS), and apoptotic factors (Bax and Bcl2). XOX, MDA, and antioxidant enzymes (CAT, SOD, and GPx) were measured by ZellBio GmbH kits by an ELISA Reader.Results:The results showed significant decreases in the activity of antioxidant enzymes (CAT, SOD, and Gpx) and a significant increase in the activity of the MDA and XOX in cardiovascular patients. Significant increases in IL-10, iNos, iNOS / eNOS, and TNF-α in cardiovascular patients were also observed. Also, a significant increase in the expression of miR-208 (HF> arrhythmia> ACS> MI) and a significant decrease in the expression of miR-1 (ACS> arrhythmia> HF> MI) were found in all four groups in cardiovascular patients.Conclusion:The results showed increases in oxidative stress, inflammation, apoptotic factors, and in the expression of miR-208a in a variety of cardiovascular patients (ACS, MI, arrhythmia, and HF). It is suggested that future studies determine the relationships that miR-1, miR-208, and oxidative stress indices have with inflammation and apoptosis.Key Words: Apoptosis, Cardiovascular diseases, Inflammation, microRNA-208a, microRNA-1, Oxidative stress  相似文献   
88.
89.
Drought is one of the major factors limiting the yield of wheat (Triticum aestivum L.) particularly during grain filling. Under terminal drought condition, remobilization of pre-stored carbohydrates in wheat stem to grain has a major contribution in yield. To determine the molecular mechanism of stem reserve utilization under drought condition, we compared stem proteome patterns of two contrasting wheat landraces (N49 and N14) under a progressive post-anthesis drought stress, during which period N49 peduncle showed remarkably higher stem reserves remobilization efficiency compared to N14. Out of 830 protein spots reproducibly detected and analyzed on two-dimensional electrophoresis gels, 135 spots showed significant changes in at least one landrace. The highest number of differentially expressed proteins was observed in landrace N49 at 20days after anthesis when active remobilization of dry matter was observed, suggesting a possible involvement of these proteins in effective stem reserve remobilization of N49. The identification of 82 of differentially expressed proteins using mass spectrometry revealed a coordinated expression of proteins involved in leaf senescence, oxidative stress defense, signal transduction, metabolisms and photosynthesis which might enable N49 to efficiently remobilized its stem reserves compared to N14. The up-regulation of several senescence-associated proteins and breakdown of photosynthetic proteins in N49 might reflect the fact that N49 increased carbon remobilization from the stem to the grains by enhancing senescence. Furthermore, the up-regulation of several oxidative stress defense proteins in N49 might suggest a more effective protection against oxidative stress during senescence in order to protect stem cells from premature cell death. Our results suggest that wheat plant might response to soil drying by efficiently remobilize assimilates from stem to grain through coordinated gene expression.  相似文献   
90.
In this study, fluorescence emission spectra, UV–vis absorption spectra, ethidium bromide (EB)-competition experiment, and iodide quenching experiment were used for the interaction study of the Fish salmon DNA (FS-DNA) with [Pr(dmp)2Cl3(OH2)] where dmp is 2,9-dimethyl 1,10-phenanthroline. The binding constant and the number of binding sites of the complex with FS-DNA were 6.09?±?0.04 M?1 and 1.18, respectively. The free energy, enthalpy, and entropy changes (ΔG°, ΔH°, and ΔS°) in the binding process of the Pr(III) complex with FS-DNA were –8.02?kcal mol?1, +39.44?kcal mol?1, and +159.56?cal mol?1 K?1, respectively. Based on these results, the interaction process between FS-DNA with [Pr(dmp)2Cl3(OH2)] was spontaneous and the main binding interaction force was groove binding mode. Also, Fluorescence and electronic absorption spectroscopy were used in order to evaluate the binding characteristics, stoichiometry, and interaction mode of praseodymium(III) (Pr(III)) complex with bovine serum albumin (BSA). Title complex showed good binding propensity to BSA presenting moderately high Kb values. The fluorescence quenching of BSA by Pr(III) complex has been observed to be the static process. The positive ΔH° and ΔS° values showed that the hydrophobic interaction is the main force in the binding of Pr(III) complex and BSA. Eventually, the average aggregation number, <J>, of BSA potentially induced by title complex confirmed the 1:1 stoichiometry for title complex-BSA adducts. In vitro, antimicrobial activity of title complex was indicated that the complex is more active against both Escherichia coli and Enterococcus faecalis bacterial strains than Staphylococcus aureus, and Pseudomonas aeruginosa.

Communicated by Ramaswamy H. Sarma  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号