首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1245篇
  免费   132篇
  2021年   18篇
  2020年   17篇
  2019年   20篇
  2018年   15篇
  2016年   29篇
  2015年   36篇
  2014年   31篇
  2013年   30篇
  2012年   37篇
  2011年   49篇
  2010年   28篇
  2009年   32篇
  2008年   41篇
  2007年   55篇
  2006年   62篇
  2005年   42篇
  2004年   45篇
  2003年   44篇
  2002年   48篇
  2001年   46篇
  2000年   37篇
  1999年   41篇
  1998年   23篇
  1996年   11篇
  1995年   18篇
  1994年   17篇
  1993年   14篇
  1992年   28篇
  1991年   23篇
  1990年   18篇
  1989年   23篇
  1988年   13篇
  1987年   18篇
  1986年   13篇
  1985年   13篇
  1984年   13篇
  1983年   14篇
  1982年   15篇
  1981年   18篇
  1980年   22篇
  1979年   18篇
  1978年   18篇
  1977年   16篇
  1976年   20篇
  1975年   19篇
  1974年   28篇
  1973年   29篇
  1972年   16篇
  1971年   18篇
  1968年   13篇
排序方式: 共有1377条查询结果,搜索用时 15 毫秒
121.
In common with many other higher plant species, Arabidopsis undergoes photosynthetic acclimation, altering the composition of the photosynthetic apparatus in response to fluctuations in its growth environment. The changes in photosynthetic function that result from acclimation can be detected in a noninvasive manner by monitoring chlorophyll (Chl) fluorescence. This technique has been used to develop a screen that enables the rapid identification of plants defective at ACCLIMATION OF PHOTOSYNTHESIS TO THE ENVIRONMENT (APE) loci. The application of this screen to a population of T-DNA-transformed Arabidopsis has successfully led to the identification of a number of mutant lines with altered Chl fluorescence characteristics. Analysis of photosynthesis and pigment composition in leaves from three such mutants showed that they had altered acclimation responses to the growth light environment, each having a distinct acclimation-defective phenotype, demonstrating that screening for mutants using Chl fluorescence is a viable strategy for the investigation of acclimation. Sequencing of the genomic DNA flanking the T-DNA elements showed that in the ape1 mutant, a gene was disrupted that encodes a protein of unknown function but that appears to be specific to photosynthetic organisms, whereas the ape2 mutant carries an insertion in the region of the TPT gene encoding the chloroplast inner envelope triose phosphate/phosphate translocator.  相似文献   
122.
DNA-adenine methylation at certain GATC sites plays a pivotal role in bacterial and phage gene expression as well as bacterial virulence. We report here the crystal structures of the bacteriophage T4Dam DNA adenine methyltransferase (MTase) in a binary complex with the methyl-donor product S-adenosyl-L-homocysteine (AdoHcy) and in a ternary complex with a synthetic 12-bp DNA duplex and AdoHcy. T4Dam contains two domains: a seven-stranded catalytic domain that harbors the binding site for AdoHcy and a DNA binding domain consisting of a five-helix bundle and a beta-hairpin that is conserved in the family of GATC-related MTase orthologs. Unexpectedly, the sequence-specific T4Dam bound to DNA in a nonspecific mode that contained two Dam monomers per synthetic duplex, even though the DNA contains a single GATC site. The ternary structure provides a rare snapshot of an enzyme poised for linear diffusion along the DNA.  相似文献   
123.
Although over half the world's population might be infected by gastrointestinal (GI) helminths, their importance as therapeutic targets has been much underrated. GI helminths have only been recognized as causing considerable damage to individuals and to communities in the past 20 years, and global recognition of the problem only occurred within the past few years. As we move into the 21st century, there is a desire to undertake the challenging task of global control of GI helminths, while problems of drug resistance are discussed in the same breath. Today, we have tools that are effective for the task ahead, but these might only be available for a short time. Because of their effectiveness (both for control and as treatments for individuals), their simplicity of use and their excellent tolerability, there has been no incentive to develop new options. Unless there is a sustained effort in drug research and development, we might have to face a world without effective anthelmintics.  相似文献   
124.
Horton AC  Ehlers MD 《Neuron》2003,40(2):277-295
Among the most morphologically complex cells, neurons are masters of membrane specialization. Nowhere is this more striking than in the division of cellular labor between the axon and the dendrites. In morphology, signaling properties, cytoskeletal organization, and physiological function, axons and dendrites (or more properly, the somatodendritic compartment) are radically different. Such polarization of neurons into domains specialized for either receiving (dendrites) or transmitting (axons) cellular signals provides the underpinning for all neural circuitry. The initial specification of axonal and dendritic identity occurs early in neuronal life, persists for decades, and is manifested by the presence of very different sets of cell surface proteins. Yet, how neuronal polarity is established, how distinct axonal and somatodendritic domains are maintained, and how integral membrane proteins are directed to dendrites or accumulate in axons remain enduring and formidable questions in neuronal cell biology.  相似文献   
125.
Mu Y  Otsuka T  Horton AC  Scott DB  Ehlers MD 《Neuron》2003,40(3):581-594
Activity-dependent targeting of NMDA receptors (NMDARs) is a key feature of synapse formation and plasticity. Although mechanisms for rapid trafficking of glutamate receptors have been identified, the molecular events underlying chronic accumulation or loss of synaptic NMDARs have remained unclear. Here we demonstrate that activity controls NMDAR synaptic accumulation by regulating forward trafficking at the endoplasmic reticulum (ER). ER export is accelerated by the alternatively spliced C2' domain of the NR1 subunit and slowed by the C2 splice cassette. This mRNA splicing event at the C2/C2' site is activity dependent, with C2' variants predominating upon activity blockade and C2 variants abundant with increased activity. The switch to C2' accelerates NMDAR forward trafficking by enhancing recruitment of nascent NMDARs to ER exit sites via binding of a divaline motif within C2' to COPII coats. These results define a novel pathway underlying activity-dependent targeting of glutamate receptors, providing an unexpected mechanistic link between activity, mRNA splicing, and membrane trafficking during excitatory synapse modification.  相似文献   
126.
We have constructed Arabidopsis thaliana plants that are virtually devoid of the major light-harvesting complex, LHC II. This was accomplished by introducing the Lhcb2.1 coding region in the antisense orientation into the genome by Agrobacterium-mediated transformation. Lhcb1 and Lhcb2 were absent, while Lhcb3, a protein present in LHC II associated with photosystem (PS) II, was retained. Plants had a pale green appearance and showed reduced chlorophyll content and an elevated chlorophyll a/b ratio. The content of PS II reaction centres was unchanged on a leaf area basis, but there was evidence for increases in the relative levels of other light harvesting proteins, notably CP26, associated with PS II, and Lhca4, associated with PS I. Electron microscopy showed the presence of grana. Photosynthetic rates at saturating irradiance were the same in wild-type and antisense plants, but there was a 10-15% reduction in quantum yield that reflected the decrease in light absorption by the leaf. The antisense plants were not able to perform state transitions, and their capacity for non-photochemical quenching was reduced. There was no difference in growth between wild-type and antisense plants under controlled climate conditions, but the antisense plants performed worse compared to the wild type in the field, with decreases in seed production of up to 70%.  相似文献   
127.
Cutaneous burn trauma causes cardiac contraction and relaxation defects, but the mechanism is unclear. Previous studies suggest that burn-related changes in myocyte handling of calcium may play an important role in postburn cardiac dysfunction. With the use of a high dissociation constant (K(d)) calcium indicator 1,2-bis(2-amino-5,6-difluorophenoxy)-ethane-N,N,N',N'-tetraacetic acid (TF-BAPTA) and (19)F NMR spectroscopy, this study examined the correlation between the changes in cytosolic free calcium concentration ([Ca(2+)](i)) and cardiac function after burn trauma. Sprague-Dawley rats were given scald burn (over 40% of the total body surface area) or sham burn. Twenty-four hours later, the hearts were excised and perfused by the Langendorff method with a modified phosphate-free Krebs-Henseleit bicarbonate buffer. Left ventricular (LV) developed pressure (LVDP), calculated from peak systolic LV pressure and LV end-diastolic pressure, was assessed through a catheter attached to an intraventricular balloon. At the same time, (31)P and (19)F NMR spectroscopy was performed before and after TF-BAPTA loading. LVDP measured in hearts from burned rats was <40% than that measured in hearts from sham burn rats (65 +/- 6 vs. 110 +/- 12 mmHg, P < 0.01); [Ca(2+)](i) was increased fourfold in hearts from the burned group compared with that measured in the sham burn group (0.807 +/- 0.192 vs. 3.891 +/- 0.929 microM). Loading TF-BAPTA in hearts transiently decreased LVDP by 15%. Phosphocreatine-to-P(i) ratio decreased, but ATP and intracellular pH remained unchanged by either TF-BAPTA loading or burn trauma. In conclusion, burn trauma impaired cardiac contractility, and this functional defect was paralleled by a significant rise in [Ca(2+)](i) in the heart.  相似文献   
128.
The final stage in the migration of leukocytes to sites of inflammation involves movement of leukocytes through the endothelial cell layer and the perivascular basement membrane. Both platelet-endothelial cell adhesion molecule-1 (PECAM-1/CD31) and the integrin alphavbeta3 have been implicated in this process, and in vitro studies have identified alphavbeta3 as a heterotypic ligand for PECAM-1. In the present study we have addressed the roles of these molecules by investigating and comparing the effects of PECAM-1 and alphavbeta3 blockade on leukocyte migration in vivo. For this purpose we have examined the effects of neutralizing Abs directed against PECAM-1 (domain 1-specific, mAb 37) and beta3 integrins (mAbs 7E3 and F11) on leukocyte responses in the mesenteric microcirculation of anesthetized rats using intravital microscopy. The anti-PECAM-1 mAb suppressed leukocyte extravasation, but not leukocyte rolling or firm adhesion, elicited by IL-1beta in a dose-dependent manner (e.g., 67% inhibition at 10 mg/kg 37 Fab), but had no effect on FMLP-induced leukocyte responses. Analysis by electron microscopy suggested that this suppression was due to an inhibition of neutrophil migration through the endothelial cell barrier. By contrast, both anti-beta3 integrin mAbs, 7E3 F(ab')2 (5 mg/kg) and F11 F(ab')2 (5 mg/kg), selectively reduced leukocyte extravasation induced by FMLP (38 and 46%, respectively), but neither mAb had an effect on IL-1beta-induced leukocyte responses. These findings indicate roles for both PECAM-1 and beta3 integrins in leukocyte extravasation, but do not support the concept that these molecules act as counter-receptors in mediating leukocyte transmigration.  相似文献   
129.
The precise immunologic functions of CD1d-restricted, CD161+ AV24AJ18 (Valpha24JalphaQ) T cells are not well defined, although production of IL-4 has been suggested as important for priming Th2 responses. However, activation of human Valpha24JalphaQ T cell clones by anti-CD3 resulted in the secretion of multiple cytokines notably important for the recruitment and differentiation of myeloid dendritic cells. Specific activation of Valpha24JalphaQ T cells was CD1d restricted. Expression of CD1d was found on monocyte-derived dendritic cells in vitro, and immunohistochemical staining directly revealed CD1d preferentially expressed on dendritic cells in the paracortical T cell zones of lymph nodes. Moreover, myeloid dendritic cells both activated Valpha24JalphaQ T cells and were susceptible to lysis by these same regulatory T cells. Because myeloid dendritic cells are a major source of IL-12 and control Th1 cell differentiation, their elimination by lysis is a mechanism for limiting the generation of Th1 cells and thus regulating Th1/Th2 responses.  相似文献   
130.
Ag presented by activated APCs promote immunogenic responses whereas Ag presented by resting APCs leads to tolerance. In such a model, the regulation of cytokine release by the presence or absence of costimulation might potentially play a critical role in dictating the ultimate outcome of Ag recognition. C-C chemokines are a structurally defined family of chemoattractants that have diverse effects on inflammation. We were interested in determining the activation requirements for chemokine production by CD4+ T cells. Our data demonstrate for T cell clones and previously activated T cells from TCR-transgenic mice that stimulation with anti-TCR alone results in the production of copious amounts of macrophage-inflammatory protein-1alpha (MIP-1alpha) and other C-C chemokines, and that addition of anti-CD28 gives very little augmentation. Furthermore, MIP-1alpha production is nearly equivalent from both anergic and nonanergic cells. For naive T cells, anti-CD3 stimulation alone led to as much MIP-1alpha production as Ag + APC stimulation. The addition of costimulation gave a 3-10-fold enhancement, but this was 70-fold less than the effect of costimulation on IL-2 production. Thus, although C-C chemokines play a broad role in influencing inflammation, their production by signal 1 alone makes them unlikely to play a critical role in the decision between a tolerogenic and an immunogenic response. Furthermore, the production of MIP-1alpha by anergic T cells, as well as following signal 1 alone, raises the possibility that in vivo this chemokine serves to recruit activated T cells to become tolerant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号