首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1159篇
  免费   117篇
  1276篇
  2021年   13篇
  2020年   11篇
  2019年   12篇
  2018年   11篇
  2016年   20篇
  2015年   26篇
  2014年   27篇
  2013年   28篇
  2012年   31篇
  2011年   46篇
  2010年   25篇
  2009年   30篇
  2008年   41篇
  2007年   55篇
  2006年   57篇
  2005年   38篇
  2004年   45篇
  2003年   44篇
  2002年   45篇
  2001年   45篇
  2000年   35篇
  1999年   39篇
  1998年   17篇
  1996年   11篇
  1995年   16篇
  1994年   15篇
  1993年   13篇
  1992年   26篇
  1991年   23篇
  1990年   18篇
  1989年   19篇
  1988年   13篇
  1987年   18篇
  1986年   13篇
  1985年   13篇
  1984年   13篇
  1983年   14篇
  1982年   15篇
  1981年   18篇
  1980年   22篇
  1979年   18篇
  1978年   17篇
  1977年   15篇
  1976年   20篇
  1975年   18篇
  1974年   28篇
  1973年   29篇
  1972年   16篇
  1971年   18篇
  1968年   13篇
排序方式: 共有1276条查询结果,搜索用时 0 毫秒
31.
Intact lipopolysaccharide antigens isolated from seven different immunotypes of Pseudomonas aeruginosa have been examined by 31P-NMR spectroscopy. These macromolecular complexes contain phosphorus covalently attached to the carbohydrate residues present in the lipid A moiety and the ‘core’ oligosaccharide region. The spectral signals for various ortho- and pyro-phosphoric esters were observed. All phosphate groups appeared to be mono-esterified. Certain shifts characteristic for phosphate diester groups, observed in lipopolysaccharide complexes from other Gram-negative bacteria, were absent. Furthermore, no evidence was found to indicate that phosphate groups are involved in the covalent linkage of individual lipopolysaccharide complexes to form dimers or trimers.  相似文献   
32.
Intact lipopolysaccharide antigens isolated from seven different immunotypes of Pseudomonas aeruginosa have been examined by 31P-NMR spectroscopy. These macromolecular complexes contain phosphorus covalently attached to the carbohydrate residues present in the lipid A moiety and the ‘core’ oligosaccharide region. The spectral signals for various ortho- and pyro-phosphoric esters were observed. All phosphate groups appeared to be mono-esterified. Certain shifts characteristic for phosphate diester groups, observed in lipopolysaccharide complexes from other Gram-negative bacteria, were absent. Furthermore, no evidence was found to indicate that phosphate groups are involved in the covalent linkage of individual lipopolysaccharide complexes to form dimers or trimers.  相似文献   
33.
34.
Addition of phenyl azide to 3,5-di-O-acetyl-6,7-dideoxy-1,2-O-isopropylidene-β-l-idio-hept-6-ynofuranose (1) and subsequent saponification gave a 4-substituted 1-phenyl-1,2,3-triazole derivative (3) whose optical rotatory dispersion (o.r.d.) curve was positive. The α-d-gluco analog (5) of 1 similarly gave the 5-epimer (7) of 3; its o.r.d. curve was negative. Both 3 and 7 were degraded to the known 1-phenyl-1,2,3-triazole-4-carboxaldehyde. Similarly, addition of 2,4,6-trimethylbenzonitrile N-oxide to 1 or 5 gave the corresponding, crystalline 3-mesitylisoxazoles as single products; 13C-n.m.r. spectroscopy was used to establish the orientation of addition. Related 3-mesitylisoxazoles (11 and 13) were obtained from 1,2:3,4-di-O-isopropylidene-d-glycero-α-d-galacto-oct-7-ynopyranose (10) and its l-glycero 6-epimer (12), respectively; 11 showed the expected, large levorotation, and the 6-epimer 13 was also levorotatory. Benzonitrile (N-phenyl)imine, prepared in situ from 1-(α-chlorobenzylidene)-2-phenylhydrazine and base, did not react with 10 (or its 6-epimer 12), but did react with the 6-keto analog to give a 5-substituted 1,3-diphenyl-1,2-diazole.  相似文献   
35.
Methyl 2,3-O-benzylidene-6-deoxy-α-L-mannopyranoside (2) reacted with butyllithium to give a mixture of 1,5-anhydro-3-C-butyl-1,2,6-trideoxy-L-ribo-hex-1-enitol (3) and its L-arabino analogue (4), together with methyl 2,3,6-trideoxy-α-L-erythro-hex-2-enopyranoside (5). In contrast, the 4-O-methyl analogue (8) of 2 was converted by butyllithium into methyl 2,6-dideoxy-4-O-methyl-α-L-erythro-hexo-pyranosid-3-ulose (9), which was further characterized as its oxime 10. The 4-O-benzyl analogue of 8, obtained as two separate diastereoisomers (6 and 7) differing in configuration at C-2 of the dioxolane ring, gave a complex mixture of products on treatment with butyllithium.  相似文献   
36.
37.
—The convulsant action of methyldithiocarbazinate (MDTC), thiocarbohydrazide (TCH) and thiosemicarbazide (TSC) has been studied in mice. The relationship between dose and time to convulsions indicated that MDTC has a dual action and is more potent than TSC. Pretreatment of mice with pyridoxal phosphate (0.25 mmol/kg) protected against convulsions and death produced by low doses of MDTC or TCH, and low or high doses of TSC. Pretreatment with pyridoxine hydrochloride (0.25 mmol/kg) protected mice against TSC but not against TCH. It protected against low doses of MDTC (0.12 mmol/kg), but shortened the latency to convulsions after intermediate doses of MDTC (0.37 mmol/kg). Glutamate decarboxylase activity (GAD, EC 4.1.1.15) in whole brain homogenates from mice killed at the onset of seizures, was significantly reduced by all 3 drugs at all doses. This inhibition did not exceed 30% after any dose of TSC or TCH, but was 64% in mice killed 4 min after the injection of MDTC (0.98 mmol/kg). The addition of pyridoxal phosphate to brain homogenates abolished GAD inhibition after MDTC but not after TCH. In vitro brain GAD was 50% inhibited by 10−4m -MDTC, 18% by 10−4m -TSC and 8% by 10 −4m -TCH. Kinetic studies suggested that at low concentrations MDTC inhibits by competing with pyridoxal phosphate. At the onset of convulsions the cerebral content of pyridoxal phosphate was reduced after low or high doses of TSC (0.27 and 2.2 mmol/kg) and after high doses of MDTC (0.98 mmol/kg). All three drugs (at 10−5−10−4m ) inhibited pyridoxal phosphokinase (EC 2.7.1.35) in vitro. Short latency convulsions after MDTC (0.37–0.98 mmol/kg) very probably arise from inhibition of cerebral GAD, due to competition for coenzymic sites and/or unavailability of coenzyme. Long-latency convulsions after MDTC (0.12–0.37 mmol/kg) are comparable to those seen after TSC (0.27–2.2 mmol/kg) and may depend on a mechanism additional to inhibition of GAD.  相似文献   
38.
39.
The liver secretes triglyceride-rich VLDLs, and the triglycerides in these particles are taken up by peripheral tissues, mainly heart, skeletal muscle, and adipose tissue. Blocking hepatic VLDL secretion interferes with the delivery of liver-derived triglycerides to peripheral tissues and results in an accumulation of triglycerides in the liver. However, it is unclear how interfering with hepatic triglyceride secretion affects adiposity, muscle triglyceride stores, and insulin sensitivity. To explore these issues, we examined mice that cannot secrete VLDL [due to the absence of microsomal triglyceride transfer protein (Mttp) in the liver]. These mice exhibit markedly reduced levels of apolipoprotein B-100 in the plasma, along with reduced levels of triglycerides in the plasma. Despite the low plasma triglyceride levels, triglyceride levels in skeletal muscle were unaffected. Adiposity and adipose tissue triglyceride synthesis rates were also normal, and body weight curves were unaffected. Even though the blockade of VLDL secretion caused hepatic steatosis accompanied by increased ceramides and diacylglycerols in the liver, the mice exhibited normal glucose tolerance and were sensitive to insulin at the whole-body level, as judged by hyperinsulinemic euglycemic clamp studies. Normal hepatic glucose production and insulin signaling were also maintained in the fatty liver induced by Mttp deletion. Thus, blocking VLDL secretion causes hepatic steatosis without insulin resistance, and there is little effect on muscle triglyceride stores or adiposity.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号