首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   477篇
  免费   38篇
  515篇
  2023年   5篇
  2022年   1篇
  2021年   6篇
  2020年   9篇
  2019年   5篇
  2018年   13篇
  2017年   14篇
  2016年   16篇
  2015年   26篇
  2014年   31篇
  2013年   32篇
  2012年   51篇
  2011年   30篇
  2010年   26篇
  2009年   13篇
  2008年   24篇
  2007年   22篇
  2006年   25篇
  2005年   25篇
  2004年   14篇
  2003年   22篇
  2002年   17篇
  2001年   8篇
  2000年   6篇
  1999年   10篇
  1998年   4篇
  1997年   4篇
  1996年   6篇
  1995年   4篇
  1994年   4篇
  1993年   3篇
  1992年   6篇
  1991年   5篇
  1990年   7篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   5篇
  1983年   2篇
  1972年   2篇
排序方式: 共有515条查询结果,搜索用时 15 毫秒
501.
Circular chromosomes can form dimers during replication and failure to resolve those into monomers prevents chromosome segregation, which leads to cell death. Dimer resolution is catalysed by a highly conserved site-specific recombination system, called XerCD-dif in Escherichia coli. Recombination is activated by the DNA translocase FtsK, which is associated with the division septum, and is thought to contribute to the assembly of the XerCD-dif synapse. In our study, direct observation of the assembly of the XerCD-dif synapse, which had previously eluded other methods, was made possible by the use of Tethered Particle Motion, a single molecule approach. We show that XerC, XerD and two dif sites suffice for the assembly of XerCD-dif synapses in absence of FtsK, but lead to inactive XerCD-dif synapses. We also show that the presence of the γ domain of FtsK increases the rate of synapse formation and convert them into active synapses where recombination occurs. Our results represent the first direct observation of the formation of the XerCD-dif recombination synapse and its activation by FtsK.  相似文献   
502.
The importance of the fall armyworm, Spodoptera frugiperda (J.E. Smith), is not only due to the damage it can cause, but also to its difficult control. It is essential to know the pest population parameters, such as its standard scattering in the crop, because depending on the space arrangement of the insects in the area, different sampling methods are required. For the present work, three experimental fields were installed in different areas: the first one had 66 plots with seven plants each; the second one had 55 plots with four plants each; and the third field had 55 plots with six plants each. The presence or absence of the pest in the plant was evaluated in the samples. According to the data observed, either to the scattering index or to the theoretical scattering models, S. frugiperda dispersion is scattered at random and strongly depends on the infestation level.  相似文献   
503.
Synthesis, characterization, anticancer activity, and comparative molecular field analysis (CoMFA) of 14 argentatin B (1) analogs are described. The effect of argentatin B derivatives on the growth of K562 (leukemia), PC-3 (prostate), U251 (CNS), and HCT-15 (colon) human cancer cell lines was determined using the sulforhodamine B test. The most active compound in this series, 2-formyl-(16beta,24R)-16,24-epoxy-25-hydroxycycloart-1-en-3-one (12), was about 35-50 times more potent than argentatin B (1). Structures were built using the X-ray crystallography of six derivatives for 3D modeling with Sybyl6.9. CoMFA of Log (1/IC50) in K562 cell line gave q2 = 0.507, r2 = 0.907, and three components. The standard deviation CoMFA contours indicate that increased activity is associated with a bulky group at C-2, a C1-C2 double bond, and low electronic density at C-25. Experimental Log P values for argentatin B and one derivative were 1-2 Log units more hydrophilic than the calculated CLog P values.  相似文献   
504.
Initiation of transposition requires formation of a synaptic complex between both transposon ends and the transposase (Tpase), the enzyme which catalyses DNA cleavage and strand transfer and which ensures transposon mobility. We have used a single-molecule approach, tethered particle motion (TPM), to observe binding of a Tpase derivative, OrfAB[149], amputated for its C-terminal catalytic domain, to DNA molecules carrying one or two IS911 ends. Binding of OrfAB[149] to a single IS911 end provoked a small shortening of the DNA. This is consistent with a DNA bend introduced by protein binding to a single end. This was confirmed using a classic gel retardation assay with circularly permuted DNA substrates. When two ends were present on the tethered DNA in their natural, inverted, configuration, Tpase not only provoked the short reduction in length but also generated species with greatly reduce effective length consistent with DNA looping between the ends. Once formed, this 'looped' species was very stable. Kinetic analysis in real-time suggested that passage from the bound unlooped to the looped state could involve another species of intermediate length in which both transposon ends are bound. DNA carrying directly repeated ends also gave rise to the looped species but the level of the intermediate species was significantly enhanced. Its accumulation could reflect a less favourable synapse formation from this configuration than for the inverted ends. This is compatible with a model in which Tpase binds separately to and bends each end (the intermediate species) and protein-protein interactions then lead to synapsis (the looped species).  相似文献   
505.
Although insulin and exercise cause dramatic changes in physiological parameters, the impact of exercise on neural and hemodynamic responses to insulin administration has not been described. In a study of the effects of a single bout of exercise on blood pressure (BP), muscle sympathetic nerve activity (MSNA), and forearm blood flow (FBF) responses to insulin infusion during the postexercise period, 11 healthy men underwent, in a random order, two hyperinsulinemic euglycemic clamps performed after 45 min of 1) bicycle exercise (50% peak O(2) uptake, Exercise session) and 2) seated rest (Control session). Data were analyzed during baseline and steady-state periods. Although insulin levels and insulin sensitivity were similar, baseline plasma glucose levels were significantly lower in the Exercise than in the Control session. Mean BP was significantly lower (3%) and FBF was higher (27%) in the Exercise session. Exercise increased insulin-induced MSNA enhancement (84%) without changing FBF and BP responses to hyperinsulinemia. In conclusion, a single bout of exercise that does not alter insulin sensitivity exacerbates insulin-induced increase in MSNA without changing FBF and BP responses to hyperinsulinemia.  相似文献   
506.
Global cerebral ischemia and subsequent reperfusion induce early impairment of the vasodilator responses to hypercapnia and vasoactive substances. Nitric oxide (NO) is involved in the regulation of cerebral blood flow (CBF) in both health and disease. The present study was designed to assess possible changes in the cerebrovascular reactivity to NO donors induced by cerebral ischemia-reperfusion in goats. Female goats (n = 9) were subjected to 20 min global cerebral ischemia under halothane/N2O anesthesia. Sixteen additional goats were sham-operated as a control group. One week later the effects of ischemia-reperfusion on relaxations to NO donors sodium nitroprusside (SNP), diethylamine/NO (DEA/NO), diethylenetriamine/NO (DETA/NO), and spermine/NO (SPER/NO) were studied in rings of middle cerebral artery (MCA) isolated in an organ bath for isometric tension recording. SNP, DEA/NO, DETA/NO, and SPER/NO induced concentration-dependent relaxations of MCA precontracted with KCl (DEA/NO > SPER/NO > SNP > DETA/NO) or with endothelin-1 (DEA/NO > SNP > SPER/NO > DETA/NO). Relaxations were always higher in endothelin-1-precontracted arteries. One week after cerebral ischemia concentration-response curves to SNP and DEA/NO were displaced to the right, indicating a reduction in relaxant potency of NO donors. The classical nitrovasodilator SNP and NONOates induce relaxation of isolated goat MCA which is partially inhibited by arterial depolarization. Global cerebral ischemia followed by reperfusion induces delayed impairment of the relaxant effects of NO on cerebrovascular smooth muscle, which results in reduced vasodilatory potency of NO donors in large cerebral arteries.  相似文献   
507.

Premise

Plant lineages differ markedly in species richness globally, regionally, and locally. Differences in whole-genome characteristics (WGCs) such as monoploid chromosome number, genome size, and ploidy level may explain differences in global species richness through speciation or global extinction. However, it is unknown whether WGCs drive species richness within lineages also in a recent, postglacial regional flora or in local plant communities through local extinction or colonization and regional species turnover.

Methods

We tested for relationships between WGCs and richness of angiosperm families across the Netherlands/Germany/Czechia as a region, and within 193,449 local vegetation plots.

Results

Families that are species-rich across the region have lower ploidy levels and small monoploid chromosomes numbers or both (interaction terms), but the relationships disappear after accounting for continental and local richness of families. Families that are species-rich within occupied localities have small numbers of polyploidy and monoploid chromosome numbers or both, independent of their own regional richness and the local richness of all other locally co-occurring species in the plots. Relationships between WGCs and family species-richness persisted after accounting for niche characteristics and life histories.

Conclusions

Families that have few chromosomes, either monoploid or holoploid, succeed in maintaining many species in local communities and across a continent and, as indirect consequence of both, across a region. We suggest evolutionary mechanisms to explain how small chromosome numbers and ploidy levels might decrease rates of local extinction and increase rates of colonization. The genome of a macroevolutionary lineage may ultimately control whether its species can ecologically coexist.
  相似文献   
508.
  1. In some regions, climate change is increasing the variability of rainfall and the frequency of extreme events such as drought. Consequently, non-flow periods have grown in length and frequency, both in temporary and in formerly permanent streams. Water abstraction for human use may further prolong these dry periods.
  2. We analysed the resistance and resilience of biofilms from permanent and temporary streams to non-flow conditions. This was achieved by exposing cobbles (collected from permanent and temporary streams) with intact biofilm to 31 days of non-flow, followed by 20 days of stream flow in artificial stream channels. Biofilm resistance and resilience were assessed at a structural (algal biomass, pigment composition, and algae and cyanobacteria composition) and functional level (photosynthetic efficiency and community metabolism).
  3. Algal taxa in biofilms from permanent and temporary streams differed throughout the experiment. Biofilms from permanent streams were less resistant to non-flow than those from temporary streams at structural level. Permanent stream biofilms also presented lower resilience at a structural level, but responded similarly to temporary stream biofilms at a functional level.
  4. Our investigation shows how the non-flow period disturbed permanent stream biofilms, and suggests that temporary stream biofilms will have greater adaptive capacity as hydroperiod becomes shorter due to climate change.
  相似文献   
509.
Candida albicans cell wall components were analyzed by ethylenediamine (EDA) treatment. Based on their different solubility properties, the cell wall components produced three fractions (A, B, and C). Fractions B (EDA-soluble, water-insoluble) and C (EDA-insoluble) contained glucan, chitin, and protein in different proportions. After zymolyase (mainly a β-glucanase complex) or chitinase treatment of fractions B and C, more polysaccharides and proteins were solubilized by a second EDA treatment, suggesting that the solubility of the polymers in EDA depends on the degree of polymer interactions. Western blot analysis using two monoclonal antibodies (1B12 and 4C12) revealed electrophoretic patterns that were similar in mycelial and yeast morphologies, except that in material obtained from mycelial walls, an additional band was detected with MAb 1B12. Fluorescence microscopy of cell wall fractions treated with FITC-labeled Con-A, Calcofluor white, and FITC-labeled agglutinin showed that glucan and mannoproteins are uniformly distributed in fractions B and C, while chitin is restricted to distinct patches. Transmission electron microscopy demonstrated that fraction C maintained the original shape of the cells, with an irregular thickness generally wider than the walls. When fraction C was treated with chitinase, the morphology was still present and was maintained by an external glucan layer, with an internal expanded fibrillar material covering the entire cellular lumen. Degradation of the glucan skeleton of fraction C with zymolyase resulted in the loss of the morphology. Received: 1 April 1996 / Accepted: 2 September 1996  相似文献   
510.
In this paper we show that FRAP experiments at variable beam radii provide an experimental approach for investigating membrane organization and dynamics, with great potential for identifying micrometer-sized domains and determining their size and the diffusion coefficient of the lipid and protein molecules they contain. Monte Carlo simulations of FRAP experiments at variable beam radii R on models of compartmentalized membranes have allowed us to establish the relationships (i) between the mobile fraction M of a diffusing particle and the size r of the domains, and (ii) between the apparent diffusion coefficient Dapp and the real diffusion coefficient D0 of this particle inside the domains. Furthermore, in its present stage of development, this approach allows us to specify whether these domains are strictly closed or not. This approach was first validated on an experimental model of a strictly compartmentalized membrane consisting of a monolayer of apposed spherical phospholipid bilayers supported by silica beads of known radius (0.83 μm). To prevent fusion between the spherical bilayers 5 mol% of a polymer-grafted phospholipid was added to the lipids. Analysis of the M versus R data yielded a radius r of 0.92±0.09 μm for the spherical bilayers, close to that of the supporting silica beads. When applied to the experimental data available for lipids and proteins in the plasma membrane of living cells, this approach suggests the existence of domains within these membranes with a radius of about 0.4 – 0.7 μm for the lipids and 0.25 μm for the proteins. These domains are not strictly closed and they are believed to be delineated by fluctuating barriers which are more or less permeable to lipid and protein molecules. Received: 4 September 1997 / Revised version: 19 January 1998 / Accepted: 19 January 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号