首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5992篇
  免费   432篇
  国内免费   1篇
  6425篇
  2022年   39篇
  2021年   50篇
  2020年   40篇
  2019年   36篇
  2018年   76篇
  2017年   52篇
  2016年   107篇
  2015年   166篇
  2014年   166篇
  2013年   283篇
  2012年   339篇
  2011年   328篇
  2010年   228篇
  2009年   228篇
  2008年   296篇
  2007年   276篇
  2006年   284篇
  2005年   303篇
  2004年   283篇
  2003年   254篇
  2002年   251篇
  2001年   62篇
  2000年   69篇
  1999年   92篇
  1998年   98篇
  1997年   77篇
  1996年   65篇
  1995年   77篇
  1994年   86篇
  1993年   82篇
  1992年   83篇
  1991年   76篇
  1990年   61篇
  1989年   61篇
  1988年   51篇
  1987年   54篇
  1986年   51篇
  1985年   63篇
  1984年   54篇
  1983年   55篇
  1982年   66篇
  1981年   63篇
  1980年   59篇
  1979年   68篇
  1978年   59篇
  1977年   37篇
  1976年   38篇
  1975年   32篇
  1973年   40篇
  1972年   30篇
排序方式: 共有6425条查询结果,搜索用时 15 毫秒
101.
The mammalian suprachiasmatic nuclei (SCN) contain thousands of neurons capable of generating near 24-h rhythms. When isolated from their network, SCN neurons exhibit a range of oscillatory phenotypes: sustained or damping oscillations, or arrhythmic patterns. The implications of this variability are unknown. Experimentally, we found that cells within SCN explants recover from pharmacologically-induced desynchrony by re-establishing rhythmicity and synchrony in waves, independent of their intrinsic circadian period We therefore hypothesized that a cell''s location within the network may also critically determine its resynchronization. To test this, we employed a deterministic, mechanistic model of circadian oscillators where we could independently control cell-intrinsic and network-connectivity parameters. We found that small changes in key parameters produced the full range of oscillatory phenotypes seen in biological cells, including similar distributions of period, amplitude and ability to cycle. The model also predicted that weaker oscillators could adjust their phase more readily than stronger oscillators. Using these model cells we explored potential biological consequences of their number and placement within the network. We found that the population synchronized to a higher degree when weak oscillators were at highly connected nodes within the network. A mathematically independent phase-amplitude model reproduced these findings. Thus, small differences in cell-intrinsic parameters contribute to large changes in the oscillatory ability of a cell, but the location of weak oscillators within the network also critically shapes the degree of synchronization for the population.  相似文献   
102.
Recent studies have shown that capacitance measurements of large arteries provide better prognosis and diagnosis than tests of resistance alone in pulmonary hypertension (Mahapatra et al., 2006, "Relationship of Pulmonary Arterial Capacitance and Mortality in Idiopathic Pulmonary Arterial Hypertension," J. Am. Coll. Cardiol., 47(4), pp. 799-803; Reuben, 1971, "Compliance of the Human Pulmonary Arterial System in Disease," Circ. Res., 29, pp. 40-50]. Decreased arterial capacitance causes increased load to the heart and is the direct result of increased stiffness and elastic modulus of the arterial wall. Here, we validate a pressure-diameter (PD) method for comparing the elastic modulus and collagen engagement for post-hilar pulmonary arteries with a large range of arterial diameter. The tissue mechanics of the post-hilar arteries are not well-characterized in pulmonary hypertension. It is believed that future studies with this method will provide useful insight into the role of passive tissue mechanics of these arteries in the pathophysiology of pulmonary hypertension, eventually improving clinical diagnosis, prognosis, and treatment. Post-hilar pulmonary arteries, excised from healthy and hypertensive calves and healthy cows, were inflated over a range of 0 [mm Hg] to 110 [mm Hg] in an isolated tissue bath. Internal pressure was recorded with an electric pressure catheter. Artery diameter and longitudinal stretch were recorded photographically. Stress-strain data curves were extracted using Lame's law of thick-walled tubes. Radial strips were removed from each section and tested in a uniaxial (MTS) tester for validation. Both the elastic modulus and collagen engagement strain were similar to results obtained by more traditional means. The average difference between measured values of the two methods for collagen engagement strain was 3.3% of the average value of the engagement strain. The average difference between the measured values of the two methods for modulus of elasticity was 7.4% of the average value of the modulus. The maximum, theoretical, relative error for the stress determined with the PD method was calculated at 20.3%. The PD method proved to be a suitable replacement for uniaxial strain tests in comparing collagen engagement strains. The method allowed faster testing of tissues of multiple diameters, while removing the effect of end conditions. The PD method will be of further utility in continued study of tissue mechanics in pulmonary hypertension studies.  相似文献   
103.
Colonic crypts are stereotypical structures with distinct stem cell, proliferating, and differentiating compartments. Colorectal cancers derive from colonic crypt epithelia but, in contrast, form morphologically disarrayed glands. In this study, we investigated to which extent colorectal cancers phenocopy colonic crypt architecture and thus preserve structural organization of the normal intestinal epithelium. A subset of colon cancers showed crypt-like compartments with high WNT activity and nuclear β-Catenin at the leading tumor edge, adjacent proliferation, and enhanced Cytokeratin 20 expression in most differentiated tumor epithelia of the tumor center. This architecture strongly depended on growth conditions, and was fully reproducible in mouse xenografts of cultured and primary colon cancer cells. Full crypt-like organization was associated with low tumor grade and was an independent prognostic marker of better survival in a collection of 221 colorectal cancers. Our findings suggest that full activation of preserved intestinal morphogenetic programs in colon cancer requires in vivo growth environments. Furthermore, crypt-like architecture was linked with less aggressive tumor biology, and may be useful to improve current colon cancer grading schemes.  相似文献   
104.
Summary Relationships between root zone temperature, concentrations and uptake rates of NH 4 + and NO 3 were studied in non-mycorrhizal roots of 4-year-old Norway spruce under controlled environmental conditions. Additionally, in a forest stand NH 4 + and NO 3 uptake rates along the root axis and changes in the rhizosphere pH were measured. In the concentration (Cmin) range of 100–150 M uptake rates of NH 4 + were 3–4 times higher than those of NO 3 The preference for NH 4 + uptake was also reflected in the minimum concentration (Cmin) values. Supplying NH4NO3, the rate of NO 3 uptake was very low until the NH 4 + concentrations had fallen below about 100 M. The shift from NH 4 + to NO 3 uptake was correlated with a corresponding shift from net H+ production to net H+ consumption in the external solution. The uptake rates of NH 4 + were correlated with equimolar net production of H+. With NO 3 nutrition net consumption of H+ was approximately twice as high as uptake rates of NO 3 In the forest stand the NO 3 concentration in the soil solution was more than 10 times higher than the NH 4 + concentration (<100 M), and the rhizosphere pH of non-mycorrhizal roots considerably higher than the bulk soil pH. The rhizosphere pH increase was particularly evident in apical root zones where the rates of water and NO 3 uptake and nitrate reductase activity were also higher. The results are summarized in a model of water and nutrient transport to, and uptake by, non-mycorrhizal roots of Norway spruce in a forest stand. Model calculations indicate that delivery to the roots by mass flow may meet most of the plant demand of nitrogen and calcium, and that non-mycorrhizal root tips have the potential to take up most of the delivered nitrate and calcium.  相似文献   
105.
Flavodoxins in combination with the flavin mononucleotide (FMN) cofactor play important roles for electron transport in prokaryotes. Here, novel insights into the FMN‐binding mechanism to flavodoxins‐4 were obtained from the NMR structures of the apo‐protein from Lactobacillus acidophilus (YP_193882.1) and comparison of its complex with FMN. Extensive reversible conformational changes were observed upon FMN binding and release. The NMR structure of the FMN complex is in agreement with the crystal structure (PDB ID: 3EDO ) and exhibits the characteristic flavodoxin fold, with a central five‐stranded parallel β–sheet and five α‐helices forming an α/β‐sandwich architecture. The structure differs from other flavoproteins in that helix α2 is oriented perpendicular to the β‐sheet and covers the FMN‐binding site. This helix reversibly unfolds upon removal of the FMN ligand, which represents a unique structural rearrangement among flavodoxins.  相似文献   
106.
Cerebral endothelial cells accomplish the barrier functions between blood and brain interstitium. Structural features are the tight junctions between adjacent endothelial cells and the formation of marginal folds at the cell-cell contacts. The glucocorticoid hydrocortisone (HC) has been reported to enforce the blood-brain-barrier in vitro measurable by an increase of the transendothelial electrical resistance. This study shows the impact of HC on the mechanical and morphological properties of confluent cell layers of brain microvascular endothelial cells. HC induces an increase in height of these marginal folds and a reduction of the intercellular contact surface. These morphological changes are accompanied by changes in cell elasticity. Staining of fibrous actin indicates that HC induces a reorganization of the actin cortex. The quantitative determination of the local elastic properties of cells reveals for the first time an HC-induced increase of the representative Young's modulus according to cytoskeletal rearrangements. For this study, cells of two different species, porcine brain capillary endothelial cells and murine brain capillary endothelial cells, were used yielding similar results, which clearly demonstrates that the HC effect on the cell elasticity is species independent.  相似文献   
107.
108.
Immune mechanisms in 2 strains of Salmo salar (Baltic salmon from River Ume Alv in Sweden and East Atlantic salmon from River Skjern? in Denmark) infected with the monogenean ectoparasite Gyrodactylus salaris were elucidated by molecular tools (real-time PCR). The gene expression in the fins (the preferred microhabitat of the parasite) of the susceptible but responding Swedish salmon was compared to the expression in the fins of the highly susceptible and nonresponding East Atlantic salmon. Experimental infections confirmed that both the Swedish and the Danish salmon allowed initial propagation of the parasite on the fins for a few weeks. Baltic salmon subsequently activated a response from Day 28 and limited the parasite population to a few parasites per host within the following weeks. In contrast, the Danish salmon did not respond and experienced a continuing increase in the parasite load during the same period, which reached several hundreds of parasites per host. RNA was isolated from fins of the 2 salmon strains during the course of infection and subsequent real-time PCR showed an increased expression of INFgamma, Mx and MHC I genes in Baltic salmon fins during large segments of the response phase. No upregulation of these genes could be detected in susceptible salmon. No increase in immunoglobulin genes was seen in any of the fish strains, which supports the notion that antibodies are not involved in the response. Further, the work suggests that cellular factors could at least partly contribute to the anti-parasitic response in Baltic salmon.  相似文献   
109.

Background  

Fibre type specification is a poorly understood process beginning in embryogenesis in which skeletal muscle myotubes switch myosin-type to establish fast, slow and mixed fibre muscle groups with distinct function. Growth factors are required to establish slow fibres; it is unknown how fast twitch fibres are specified. Igf-2 is an embryonically expressed growth factor with established in vitro roles in skeletal muscle. Its localisation and role in embryonic muscle differentiation had not been established.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号