首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2811篇
  免费   270篇
  国内免费   5篇
  2023年   19篇
  2022年   65篇
  2021年   88篇
  2020年   87篇
  2019年   177篇
  2018年   127篇
  2017年   72篇
  2016年   104篇
  2015年   137篇
  2014年   109篇
  2013年   175篇
  2012年   216篇
  2011年   186篇
  2010年   109篇
  2009年   98篇
  2008年   128篇
  2007年   115篇
  2006年   111篇
  2005年   93篇
  2004年   86篇
  2003年   71篇
  2002年   72篇
  2001年   35篇
  2000年   31篇
  1999年   37篇
  1998年   19篇
  1997年   22篇
  1995年   11篇
  1994年   13篇
  1993年   17篇
  1992年   32篇
  1991年   26篇
  1990年   12篇
  1989年   18篇
  1988年   27篇
  1987年   36篇
  1986年   30篇
  1985年   29篇
  1984年   12篇
  1983年   22篇
  1982年   13篇
  1980年   11篇
  1979年   16篇
  1978年   24篇
  1977年   18篇
  1976年   11篇
  1975年   11篇
  1974年   16篇
  1973年   13篇
  1970年   11篇
排序方式: 共有3086条查询结果,搜索用时 31 毫秒
61.
The enzyme rhodanese (thiosulfate sulfurtransferase, EC 2.8.1.1) is inactivated on incubation with reducing sugars such as glucose, mannose, or fructose, but is stable with non-reducing sugars or related polyhydroxy compounds. The enzyme is inactivated with (ES) or without (E) the transferable sulfur atom, although E is considerably more sensitive, and inactivation is accentuated by cyanide. Inactivation of E is accompanied by increased proteolytic susceptibility, a decreased sulfhydryl titer, a red-shift and quenching of the protein fluorescence, and the appearance of hydrophobic surfaces. Superoxide dismutase and/or catalase protect rhodanese. Inactive enzyme can be partially reactivated during assay and almost completely reactivated by incubation with thiosulfate, lauryl maltoside, and 2-mercaptoethanol. These results are similar to those observed when rhodanese is inactivated by hydrogen peroxide. These observations, as well as the cyanide-dependent, oxidative inactivation by phenylglyoxal, are explained by invoking the formation of reactive oxygen species such as superoxide or hydrogen peroxide from autooxidation of alpha-hydroxy carbonyl compounds, which can be facilitated by cyanide.  相似文献   
62.
Unfolded (inactive) rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1) can be reactivated in the presence of detergents, e.g. lauryl maltoside (LM). Here, we report the reactivation of urea-unfolded rhodanese in the presence of mixed micelles containing LM and the anionic mitochondrial phospholipid, cardiolipin (CL). Reactivation times increased as the number of CL molecules/micelle was increased. A maximum of 94% of the activity was recovered at 2.2 CL/micelle. Only 71% of the activity was recovered in the absence of CL. The major zwitterionic mitochondrial phospholipid, phosphatidylcholine (PC), had no effect on the LM-assisted reactivation of rhodanese. Size exclusion chromatography showed that denatured, but not native, rhodanese apparently binds to micellar amounts of LM and CL/LM, but not to PC/LM micelles. The lifetime of the enzyme-micelle complex increased with the number of CL molecules/micelle. Furthermore, chromatographic fractions containing micelle-bound enzyme had no activity, while renatured rhodanese-containing fractions were active. These results suggest that transient complexes form between enzyme and both LM and CL/LM micelles, and that this complex formation may be necessary for reactivation. For CL/LM micelles, interactions may occur between the positively charged amino-terminal sequence of rhodanese and the negatively charged CL phosphate. Finally, this work shows that there are similarities between "micelle-assisted" and chaperonin-assisted rhodanese refolding.  相似文献   
63.
We investigated the effect of small shortening imposed on frog muscle fibers during sarcomere-isometric tetani. Sarcomere length was initially kept constant, then slightly shortened (1%-5% of initial length) and clamped again for the remainder of the tetanus. Force level after the shortening was higher than the force level preceding the release. The size of the increase was larger than that predicted by the descending limb of the linear force-length relation. The difference between measured and predicted force levels increased with sarcomere length. At a sarcomere length of 3.2 microns, the force level after the shortening was higher by 50% than the force level expected from the linear descending limb. Dispersion of sarcomere-length within the sampled region was measured by two independent methods: striation imaging and analysis of the intensity profile of the first diffraction order. Sarcomere-length inhomogeneity in the sampled region was too small (standard deviation from the average sarcomere-length was +/- 0.03 microns) to account for the size of the increase in force. We studied the dependence of increase in tetanic force level after small sarcomere-length release on the size, velocity and timing of the release, as well as on initial sarcomere-length. Release size was the major determinant of the amount of increase in force. Release of 20 nm per half sarcomere was sufficient to produce an almost full force increase. Larger releases increased the force only moderately. Over the range studied, release velocity and timing had little or no effect.  相似文献   
64.
To complete assignment of the 19F nuclear magnetic resonance (NMR) spectrum of 5-fluorouracil-substituted Escherichia coli tRNA(Val), resonances from 5-fluorouracil residues involved in tertiary interactions have been identified. Because these assignments could not be made directly by the base-replacement method used to assign 5-fluorouracil residues in loop and stem regions of the tRNA, alternative assignment strategies were employed. FU54 and FU55 were identified by 19F homonuclear Overhauser experiments and were then assigned by comparison of their 19F NMR spectra with those of 5-fluorouracil-labeled yeast tRNA(Phe) mutants having FU54 replaced by adenine and FU55 replaced by cytosine. FU8 and FU12, were assigned from the 19F NMR spectrum of the tRNA(Val) mutant in which the base triple G9-C23-G12 substituted for the wild-type A9-A23-FU12. Although replacement of the conserved U8 (FU8) with A or C disrupts the tertiary structure of tRNA(Val), it has only a small effect on the catalytic turnover number of valyl-tRNA synthetase, while reducing the affinity of the tRNA for enzyme. Analysis of the 19F chemical shift assignments of all 14 resonances in the spectrum of 5-fluorouracil-substituted tRNAVal indicated a strong correlation to tRNA secondary and tertiary structure. 5-Fluorouracil residues in loop regions gave rise to peaks in the central region of the spectrum, 4.4 to 4.9 parts per million (p.p.m.) downfield from free 5-fluorouracil. However, the signal from FU59, in the T-loop of tRNA(Val), was shifted more than 1 p.p.m. downfield, to 5.9 p.p.m., presumably because of the involvement of this fluorouracil in the tertiary interactions between the T and D-loops. The 19F chemical shift moved upfield, to the 2.0 to 2.8 p.p.m. range, when fluorouracil was base-paired with adenine in helical stems. This upfield shift was less pronounced for the fluorine of the FU7.A66 base-pair, located at the base of the acceptor stem, an indication that FU7 is only partially stacked on the adjacent G49 in the continuous acceptor stem/T-stem helix. An unanticipated finding was that the 19F resonances of 5-fluorouracil residues wobble base-paired with guanine were shifted 4 to 5 p.p.m. downfield of those from fluorouracil residues paired with A. In the 19F NMR spectra of all fluorinated tRNAs studied, the farthest downfield peak corresponded to FU55, which replaced the conserved pseudouridine normally found at this position.  相似文献   
65.
W C Chu  J Horowitz 《Biochemistry》1991,30(6):1655-1663
Interactions of 5-fluorouracil-substituted Escherichia coli tRNAVal with its cognate synthetase have been investigated by fluorine-19 nuclear magnetic resonance. Valyl-tRNA synthetase (VRS) (EC 6.1.1.9), purified to homogeneity from an overproducing strain of E. coli, differs somewhat from VRS previously isolated from E. coli K12. Its amino acid composition and N-terminal sequence agree well with results derived from the sequence of the VRS gene [Heck, J.D., & Hatfield, G.W. (1988) J. Biol. Chem. 263, 868-877]. Apparent KM and Vmax values of the purified VRS are the same for both normal and 5-fluorouracil (FUra)-substituted tRNAVal. Binding of VRS to (FUra)tRNAVal induces structural perturbations that are reflected in selective changes in the 19F NMR spectrum of the tRNA. Addition of increasing amounts of VRS results in a gradual loss of intensity at resonances corresponding to FU34, FU7, and FU67, with FU34, at the wobble position of the anticodon, being affected most. At higher VRS/tRNA ratios, a broadening and shifting of FU12 and of FU4 and/or FU8 occur. These results indicate that VRS interacts with tRNAVal along the entire inside of the L-shape molecule, from the acceptor stem to the anticodon. Valyl-tRNA synthetase also causes a splitting of resonances FU55 and FU64 in the T-loop and stem of tRNAVal, suggesting conformational changes in this part of the molecule. No 19F NMR evidence was found for formation of the Michael adduct between VRS and FU8 of 5-fluorouracil-substituted tRNAVal that has been proposed as a common intermediate in the aminoacylation reaction.  相似文献   
66.
67.
We have defined a new autosomal recessive disorder in patients stemming from a small community in northern Mexico. Diagnosable at birth, its major symptoms include brittle hair, mental retardation, and nail dysplasia. Structural hair abnormalities are seen by both light and electron microscopy. Hair cystine content is reduced while the copper/zinc ratio in hair is increased.  相似文献   
68.
The highly active extracellular siderophores previously detected in young cultures of Aspergillus nidulans and Penicillium chrysogenum have been identified as the cyclic ester fusigen (fusarinine C), and its open-chain form, fusigen B (fusarinine B).  相似文献   
69.
A new method for isolating crystalline bovine liver thiosulfate sulfurtransferase has been developed which relies on the selective binding of the enzyme to agarose-immobilized Cibacron Blue F3GA. This preparation has the advantages of simplicity, reproducibility, and rapidity. It is also suggested that the introduction of a binding and elution step will materially aid previously published procedures.  相似文献   
70.
The germination-essential substance (germination factor [GF]) that is lost from conidia of Neurospora crassa on exposure to solutions of low water activity has been isolated and identified as a group of iron-transport compounds, or siderochromes. The principal siderochrome of conidia is ferricrocin, a cyclic hexapeptide. A closely related substance, ferrichrome C, is tentatively identified as a minor constituent. The same substances are also present in extracts of mycelium along with small amounts of a third siderochrome, which has not been identified. The GF activity of culture filtrates is due to coprogen, the only siderochrome previously identified with N. crassa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号