首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   20篇
  217篇
  2021年   3篇
  2020年   3篇
  2019年   4篇
  2018年   4篇
  2016年   6篇
  2015年   10篇
  2014年   3篇
  2013年   13篇
  2012年   11篇
  2011年   12篇
  2010年   3篇
  2009年   4篇
  2008年   15篇
  2007年   8篇
  2006年   8篇
  2005年   9篇
  2004年   8篇
  2003年   5篇
  2002年   9篇
  2001年   5篇
  2000年   4篇
  1999年   9篇
  1998年   2篇
  1997年   3篇
  1996年   5篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1988年   5篇
  1987年   6篇
  1986年   4篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1978年   1篇
  1977年   4篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
  1966年   1篇
  1965年   1篇
  1963年   1篇
排序方式: 共有217条查询结果,搜索用时 8 毫秒
51.
In order to determine the distribution and function of the 5-HT5A serotonin receptor subtype, we generated knockout mice lacking the 5-HT5A gene. Comparative autoradiography studies of brains of wild-type (wt) and 5-HT5A knockout (5A-KO) mice revealed the existence of binding sites with high affinity for [125I]LSD that correspond to 5-HT5A receptors and that are concentrated in the olfactory bulb, neocortex, and medial habenula. When exposed to novel environments, the 5A-KO mice displayed increased exploratory activity but no change in anxiety-related behaviors. In addition, the stimulatory effect of LSD on exploratory activity was attenuated in 5A-KO mice. These results suggest that 5-HT5A receptors modulate the activity of neural circuits involved specifically in exploratory behavior and suggest that some of the psychotropic effects of LSD may be mediated by 5-HT5A receptors.  相似文献   
52.
A common denominator among the multiple damage-inducing agents that ultimately lead to activation of NLRP3 has not yet been identified. Recently, production of reactive oxygen species (ROS) has been suggested to act as a common event upstream of the NLRP3 inflammasome machinery. Because de novo translation of NLRP3 is an essential step in the activation of NLRP3, we investigated the role of substances that inhibit either ROS production or its oxidative activity. Although we observe that NLRP3 inflammasome activation is unique among other known inflammasomes in its sensitivity to ROS inhibition, we have found that this phenomenon is attributable to the fact that NLRP3 strictly requires priming by a proinflammatory signal, a step that is blocked by ROS inhibitors. Although these data do not exclude a general role for ROS production in the process of NLRP3-triggered inflammation, they would put ROS upstream of NLRP3 induction, but not activation.  相似文献   
53.
The torque generated by the power stroke of Escherichia coli F(1)-ATPase was determined as a function of the load from measurements of the velocity of the gamma-subunit obtained using a 0.25 micros time resolution and direct measurements of the drag from 45 to 91 nm gold nanorods. This result was compared to values of torque calculated using four different drag models. Although the gamma-subunit was able to rotate with a 20x increase in viscosity, the transition time decreased from 0.4 ms to 5.26 ms. The torque was measured to be 63+/-8 pN nm, independent of the load on the enzyme.  相似文献   
54.
The innate immune system senses pathogens by pattern recognition receptors in different cell compartments. In the endosome, bacteria are generally recognized by TLRs; facultative intracellular bacteria such as Listeria, however, can escape the endosome. Once in the cytosol, they become accessible to cytosolic pattern recognition receptors, which recognize components of the bacterial cell wall, metabolites or bacterial nucleic acids and initiate an immune response in the host cell. Current knowledge has been focused on the type I IFN response to Listeria DNA or Listeria-derived second messenger c-di-AMP via the signaling adaptor STING. Our study focused on the recognition of Listeria RNA in the cytosol. With the aid of a novel labeling technique, we have been able to visualize immediate cytosolic delivery of Listeria RNA upon infection. Infection with Listeria as well as transfection of bacterial RNA induced a type-I-IFN response in human monocytes, epithelial cells or hepatocytes. However, in contrast to monocytes, the type-I-IFN response of epithelial cells and hepatocytes was not triggered by bacterial DNA, indicating a STING-independent Listeria recognition pathway. RIG-I and MAVS knock-down resulted in abolishment of the IFN response in epithelial cells, but the IFN response in monocytic cells remained unaffected. By contrast, knockdown of STING in monocytic cells reduced cytosolic Listeria-mediated type-I-IFN induction. Our results show that detection of Listeria RNA by RIG-I represents a non-redundant cytosolic immunorecognition pathway in non-immune cells lacking a functional STING dependent signaling pathway.  相似文献   
55.
Kinetochores are large multiprotein complexes that connect centromeres to spindle microtubules in all eukaryotes. Among the biochemically distinct kinetochore complexes, the conserved four-protein Mtw1 complex is a central part of the kinetochore in all organisms. Here we present the biochemical reconstitution and characterization of the budding yeast Mtw1 complex. Direct visualization by electron microscopy revealed an elongated bilobed structure with a 25-nm-long axis. The complex can be assembled from two stable heterodimers consisting of Mtw1p-Nnf1p and Dsn1p-Nsl1p, and it interacts directly with the microtubule-binding Ndc80 kinetochore complex via the centromere-proximal Spc24/Spc25 head domain. In addition, we have reconstituted a partial Ctf19 complex and show that it directly associates with the Mtw1 complex in vitro. Ndc80 and Ctf19 complexes do not compete for binding to the Mtw1 complex, suggesting that Mtw1 can bridge the microtubule-binding components of the kinetochore to the inner centromere.  相似文献   
56.
Oligopeptidases impose a size limitation on their substrates, the mechanism of which has long been under debate. Here we present the structure of a hexameric serine protease, an oligopeptidase from Pyrococcus horikoshii (PhAAP), revealing a complex, self-compartmentalized inner space, where substrates may access the monomer active sites passing through a double-gated “check-in” system, first passing through a pore on the hexamer surface and then turning to enter through an even smaller opening at the monomers'' domain interface. This substrate screening strategy is unique within the family. We found that among oligopeptidases, a residue of the catalytic apparatus is positioned near an amylogenic β-edge, which needs to be protected to prevent aggregation, and we found that different oligopeptidases use different strategies to achieve such an end. We propose that self-assembly within the family results in characteristically different substrate selection mechanisms coupled to different multimerization states.  相似文献   
57.
58.
Kinetochores must remain associated with microtubule ends, as they undergo rapid transitions between growth and shrinkage. The molecular basis for this essential activity that ensures correct chromosome segregation is unclear. In this study, we have used reconstitution of dynamic microtubules and total internal reflection fluorescence microscopy to define the functional relationship between two important budding yeast kinetochore complexes. We find that the Dam1 complex is an autonomous plus end–tracking complex. The Ndc80 complex, despite being structurally related to the general tip tracker EB1, fails to recognize growing ends efficiently. Dam1 oligomers are necessary and sufficient to recruit Ndc80 to dynamic microtubule ends, where both complexes remain continuously associated. The interaction occurs specifically in the presence of microtubules and is subject to regulation by Ipl1 phosphorylation. These findings can explain how the force harvested by Dam1 is transmitted to the rest of the kinetochore via the Ndc80 complex.  相似文献   
59.
Although the sex-determining genes are known in mammals, Drosophila, and C. elegans, little is known in other animals. Fishes are an attractive group of organisms for studying the evolution of sex determination because they show an amazing variety of mechanisms, ranging from environmental sex determination and different forms of hermaphroditism to classical sex chromosomal XX/XY or WZ/ZZ systems and modifications thereof. In the fish medaka, dmrt1b(Y) has recently been found to be the candidate male sex-determining gene. It is a duplicate of the autosomal dmrt1a gene, a gene acting in the sex determination/differentiation cascade of flies, worms, and mammals. Because in birds dmrt1 is located on the Z-chromosome, both findings led to the suggestion that dmrt1b(Y) is a "non-mammalian Sry" with an even more widespread distribution. However, although Sry was found to be the male sex-determining gene in the mouse and some other mammalian species, in some it is absent and has obviously been replaced by other genes that now fulfil the same function. We have asked if the same might be true of the dmrt1b(Y) gene. We find that the gene duplication generating dmrt1b(Y) occurred recently during the evolution of the genus Oryzias. The gene is absent from all other fish species studied. Therefore, it may not be the male-sex determining gene in all fishes.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号