首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2419篇
  免费   267篇
  2023年   17篇
  2022年   24篇
  2021年   65篇
  2020年   31篇
  2019年   43篇
  2018年   51篇
  2017年   42篇
  2016年   84篇
  2015年   159篇
  2014年   159篇
  2013年   151篇
  2012年   228篇
  2011年   185篇
  2010年   120篇
  2009年   102篇
  2008年   135篇
  2007年   157篇
  2006年   129篇
  2005年   139篇
  2004年   106篇
  2003年   97篇
  2002年   115篇
  2001年   22篇
  2000年   15篇
  1999年   20篇
  1998年   23篇
  1997年   14篇
  1996年   23篇
  1995年   12篇
  1994年   16篇
  1993年   10篇
  1992年   9篇
  1991年   7篇
  1990年   10篇
  1989年   5篇
  1988年   9篇
  1987年   10篇
  1986年   8篇
  1985年   13篇
  1984年   17篇
  1983年   12篇
  1982年   7篇
  1981年   8篇
  1979年   8篇
  1978年   5篇
  1974年   4篇
  1973年   7篇
  1970年   4篇
  1969年   7篇
  1962年   5篇
排序方式: 共有2686条查询结果,搜索用时 15 毫秒
111.
Our understanding of the evolutionary stability of socially selected traits is dominated by sexual selection models originating with R. A. Fisher, in which genetic covariance arising through assortative mating can trigger exponential, runaway trait evolution. To examine whether nonreproductive, socially selected traits experience similar dynamics—social runaway—when assortative mating does not automatically generate a covariance, we modeled the evolution of socially selected badge and donation phenotypes incorporating indirect genetic effects (IGEs) arising from the social environment. We establish a social runaway criterion based on the interaction coefficient, ψ , which describes social effects on badge and donation traits. Our models make several predictions. (1) IGEs can drive the original evolution of altruistic interactions that depend on receiver badges. (2) Donation traits are more likely to be susceptible to IGEs than badge traits. (3) Runaway dynamics in nonsexual, social contexts can occur in the absence of a genetic covariance. (4) Traits elaborated by social runaway are more likely to involve reciprocal, but nonsymmetrical, social plasticity. Models incorporating plasticity to the social environment via IGEs illustrate conditions favoring social runaway, describe a mechanism underlying the origins of costly traits, such as altruism, and support a fundamental role for phenotypic plasticity in rapid social evolution.  相似文献   
112.
Climate change will redistribute the global biodiversity in the Anthropocene. As climates change, species might move from one place to another, due to local extinctions and colonization of new environments. However, the existence of permeable migratory routes precedes faunal migrations in fragmented landscapes. Here, we investigate how dispersal will affect the outcome of climate change on the distribution of Amazon's primate species. We modeled the distribution of 80 Amazon primate species, using ecological niche models, and projected their potential distribution on scenarios of climate change. Then, we imposed landscape restrictions to primate dispersal, derived from a natural biogeographical barrier to primates (the main tributaries of the Amazon river) and an anthropogenic constraint to the migration of many canopy‐dependent animals (deforested areas). We also highlighted potential conflict zones, i.e. regions of high migration potential but predicted to be deforested. Species response to climate change varied across dispersal limitation scenarios. If species could occupy all newly suitable climate, almost 70% of species could expand ranges. Including dispersal barriers (natural and anthropogenic), however, led to range expansion in only less than 20% of the studied species. When species were not allowed to migrate, all of them lost an average of 90% of the suitable area, suggesting that climate may become unsuitable within their present distributions. All Amazon primate species may need to move as climate changes to avoid deleterious effects of exposure to non‐analog climates. The effect of climate change on the distribution of Amazon primates will ultimately depend on whether landscape permeability will allow climate‐driven faunal migrations. The network of protected areas in the Amazon could work as ‘stepping stones’ but most are outside important migratory routes. Therefore, protecting important dispersal corridors is foremost to allow effective migrations of the Amazon fauna in face of climate change and deforestation.  相似文献   
113.
Admixed populations have not been examined in detail in cancer genetic studies. Here, we inferred the local ancestry of cancer-associated single nucleotide polymorphisms (SNPs) and haplotypes of a highly admixed Brazilian population. SNP array was used to genotype 73 unrelated individuals aged 80-102 years. Local ancestry inference was performed by merging genotyped regions with phase three data from the 1000 Genomes Project Consortium using RFmix. The average ancestry tract length was 9.12-81.71 megabases. Strong linkage disequilibrium was detected in 48 haplotypes containing 35 SNPs in 10 cancer driver genes. All together, 19 risk and eight protective alleles were identified in 23 out of 48 haplotypes. Homozygous individuals were mainly of European ancestry, whereas heterozygotes had at least one Native American and one African ancestry tract. Native-American ancestry for homozygous individuals with risk alleles for HNF1B, CDH1, and BRCA1 was inferred for the first time. Results indicated that analysis of SNP polymorphism in the present admixed population has a high potential to identify new ancestry-associated alleles and haplotypes that modify cancer susceptibility differentially in distinct human populations. Future case-control studies with populations with a complex history of admixture could help elucidate ancestry-associated biological differences in cancer incidence and therapeutic outcomes.  相似文献   
114.
Summary Autosomal dominant polycystic kidney disease (ADPKD) is one of the most frequent human inherited diseases. The main feature of the disease is the development of renal cysts, first occurring in the proximal tubules, and with time, dominating all segments of the nephron, leading to end-stage renal disease in 50% of the patients in their fifth decade of life. A therapy for polycystic kidney disease (PKD) has not yet been developed. Patients coming to end-stage ADPKD require long-term dialysis and/or transplantation. A suitable animal model to study ADPKD is the spontaneously mutated Han:SPRD (cy/ +) rat, but a method to cultivate Han:SPRD (cy/ +) derived renal cells which preserves their ability to form cyst-like structures in vitro has previously not been reported. Based on this well-characterized animal model, we developed a cell culture model of renal cyst formation in vitro. When renal cells of the Han:SPRD (cy/ +) rat were isolated and cultured under conditions that prevent cell-substratum adhesion, large amounts of cyst-like structures were formed de novo from Han:SPRD (cy/ +) derived renal cells, but only a few from control rat renal cells. In contrast, when cultivated on plastic as monolayer cultures, Han:SPRD (cy/ +)-derived and control rat-derived renal cells were indistinguishable and did not form cyst-like structures. Immunohistochemical characterization of the cyst-like structures suggests tubular epithelial origin of the cyst-forming cells. The amount of cysts formed from Han:SPRD (cy/ +)-derived renal cells grown in a stationary suspension culture is susceptible to modulation by different conditions. Human cyst fluid and epidermal growth factor both stimulated the formation of cysts from Han:SPRD (cy/ +)-derived renal cells whereas taxol inhibited cystogenesis. In contrast, neither human cyst fluid nor epidermal growth factor affected the amount of cysts formed by control rat renal cells. As the culture model reported here allows not only the distinction of PKD-derived tubular epithelium from its normal counterpart, but also the modulation of cyst formation especially by Han:SPRD (cy/ +)-derived renal cells, it might be a useful prescreening protocol for potential treatments for PKD and thus reduce the need for animal experiments. Both authors contributed equally to the work.  相似文献   
115.
Neuronal death after brain injury   总被引:6,自引:0,他引:6  
  相似文献   
116.
To monitor functionally important metal ions and possible cross talk in RNase P RNA mediated cleavage we studied cleavage of substrates, where the 2′OH at the RNase P cleavage site (at −1) and/or at position +73 had been replaced with a 2′ amino group (or 2′H). Our data showed that the presence of 2′ modifications at these positions affected cleavage site recognition, ground state binding of substrate and/or rate of cleavage. Cleavage of 2′ amino substituted substrates at different pH showed that substitution of Mg2+ by Mn2+ (or Ca2+), identity of residues at and near the cleavage site, and addition of C5 protein influenced the frequency of miscleavage at −1 (cleavage at the correct site is referred to as +1). From this we infer that these findings point at effects mediated by protonation/deprotonation of the 2′ amino group, i.e. an altered charge distribution, at the site of cleavage. Moreover, our data suggested that the structural architecture of the interaction between the 3′ end of the substrate and RNase P RNA influence the charge distribution at the cleavage site as well as the rate of cleavage under conditions where the chemistry is suggested to be rate limiting. Thus, these data provide evidence for cross talk between the +73/294 interaction and the cleavage site in RNase P RNA mediated cleavage. We discuss the role metal ions might play in this cross talk and the likelihood that at least one functionally important metal ion is positioned in the vicinity of, and use the 2′OH at the cleavage site as an inner or outer sphere ligand.  相似文献   
117.
Stratospheric ozone depletion is most pronounced at high latitudes, and the concurring increased UV-B radiation might adversely affect plants from polar areas. However, vascular plants may protect themselves against UV-B radiation by UV-absorbing compounds located in the epidermis. In this 3-year study, epidermal UV-B (max 314 nm) and UV-A (max 366 nm) screening was assessed using a fluorescence method in 12 vascular species growing in their natural environment at Svalbard. The potential for acclimation to increased radiation was studied with artificially increased UV-B, simulating 11% ozone depletion. Open-top chambers simulated an increase in temperature of 2–3°C in addition to the UV-B manipulation. Adaxial epidermal UV-B transmittance varied between 1.6 and 11.4%. Artificially increased UV-B radiation and temperature did not consistently influence the epidermal UV-B transmittance in any of the measured species, suggesting that they may not have the potential to increase their epidermal screening, or that the screening is already high enough at the applied UV-B level. We propose that environmental factors other than UV-B radiation may influence epidermal UV-B screening.  相似文献   
118.
The structure elucidation of the cyclic (lactonic) forms of the pyoverdins with a succinamide side chain originally produced by the closely related species Pseudomonas syringae and P. cichorii is reported. Mass spectrometry and nuclear magnetic resonance analyses as well as the determination of the configuration of the amino acids after degradation indicate that these two pyoverdins differ only by the replacement of the first in-chain serine by glycine. The pyoverdins of P. syringae and P. cichorii and the dihydropyoverdin of P. syringae can be used by both species as siderophores.  相似文献   
119.
Plants use the family of phytochrome photoreceptors to sense their light environment in the red/far-red region of the spectrum. Phytochrome A (phyA) is the primary photoreceptor that regulates germination and early seedling development. This phytochrome mediates seedling de-etiolation for the developmental transition from heterotrophic to photoauxotrophic growth. High intensity far-red light provides a way to specifically assess the role of phyA in this process and was used to isolate phyA-signaling intermediates. fhy1 and pat3 (renamed fhy1-3) are independently isolated alleles of a gene encoding a phyA signal transduction component. FHY1 is a small 24 kDa protein that shows no homology to known functional motifs, besides a small conserved septin-related domain at the C-terminus, a putative nuclear localization signal (NLS) and a putative nuclear exclusion signal (NES). Here we demonstrate that the septin-related domain is important for FHY1 to transmit phyA signals. Moreover, the putative NLS and NES of FHY1 are indeed involved in its nuclear localization and exclusion. Nuclear localization of FHY1 is needed for it to execute responses downstream of phyA. Together with the results from global expression analysis, our findings point to an important role of FHY1 in phyA signaling through its nuclear translocation and induction of gene expression.  相似文献   
120.
Leeb T  Müller M 《Gene》2004,343(2):239-244
The human intercellular adhesion molecule gene (ICAM) cluster is located in a GC-rich and gene-rich region on HSA 19p13.2. We determined the complete DNA sequence of a 185-kb porcine bacterial artificial chromosome (BAC) clone containing parts of the ICAM gene cluster. We used the porcine sequence for a detailed comparative analysis between human, pig, mouse and rat. The 185 kb of porcine sequence covered 220 kb of homologous sequence in the human genome, which adds to the growing evidence that the porcine genome is somewhat smaller than the human genome. The genomic sequences of the four species showed a high level of conserved synteny and no rearrangements in gene order were observed. During evolution, the ICAM3 gene was inactivated by mutation in the mouse and rat genome, whereas it is still present in the human and pig genome. The loss of Icam3 in rodent genomes might be relevant for rodent-specific properties of the T-cell-mediated immune response. All the other investigated genes are conserved across all four investigated sequences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号