首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   5篇
  59篇
  2017年   2篇
  2016年   2篇
  2014年   3篇
  2013年   8篇
  2012年   2篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2005年   2篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  1999年   1篇
  1998年   5篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1977年   2篇
  1976年   2篇
  1974年   4篇
  1961年   1篇
  1930年   1篇
排序方式: 共有59条查询结果,搜索用时 31 毫秒
31.

Background  

Sequence related families of genes and proteins are common in bacterial genomes. In Escherichia coli they constitute over half of the genome. The presence of families and superfamilies of proteins suggest a history of gene duplication and divergence during evolution. Genome encoded protein families, their size and functional composition, reflect metabolic potentials of the organisms they are found in. Comparing protein families of different organisms give insight into functional differences and similarities.  相似文献   
32.
Although the mechanics of formalin fixation and antigen retrieval have been studied extensively and reviewed periodically, little attention has been directed toward conformational changes in target molecules. Formaldehyde changes the shape of tissue molecules by appending small hydroxymethyl groups to them. These adducts, in turn, can react with other tissue molecules to form crosslinks, or they can participate in a variety of reactions during tissue processing, including formation of imines, ethoxymethyl adducts, and further crosslinks. Under the influence of alcohol dehydration, fixed DNA may fragment and form a variety of depurination products. The situation becomes even more complex with short fixation times because under these conditions, the dehydrating agent used for tissue processing denatures macromolecules in other ways, most notably through rearrangement of molecular shape to move hydrophobic realms outward and hydrophilic areas inward (hydrophobic inversions). How tissue molecules are modified affects the outcome of immunohistochemical staining and prospects for restoration of antigenicity. Immunoreacitivity may be compromised because epitopes are either sterically hidden, but otherwise unaffected, or they have been altered more directly. Enzyme-based retrieval methods are best suited for the former because they literally snip the molecule apart to reveal the portions of interest. Heat-induced retrieval with buffers can demodify affected epitopes by removing adducts and breaking crosslinks. The choice of temperature and pH is usually critical for optimal retrieval. Effective temperatures are directly related to the strength of bonds-higher temperatures are needed to break stronger bonds. The pH of the retrieval solution determines the charge on the tissue molecule; the goal is to create a charge that causes the demodified molecule to assume a near natural conformation. Rational use of these concepts should lead to better control of immunohistochemical reactions.  相似文献   
33.
34.
In June 2008, the Biological Stain Commission sponsored A Seminar on Dyes and Staining the purpose of which was twofold: first, to show that very useful information applicable to biomedical dyes and staining is available from unrelated disciplines and second, to summarize modern thinking on how dyes, solvents, and tissues interact to produce selective staining. In this introduction to the papers from the symposium, we acknowledge that biomedical dye research has declined as newer technologies have gained importance. We should point out, however, that dyes and staining still are vitally important. Moreover, needs abound for innovative studies concerned with dye analysis, synthesis, and mode of action. Concepts and tools from unrelated fields hold promise for significant breakthroughs in many areas of interest.  相似文献   
35.
36.
37.

Background  

As the use of microarray technology becomes more prevalent it is not unusual to find several laboratories employing the same microarray technology to identify genes related to the same condition in the same species. Although the experimental specifics are similar, typically a different list of statistically significant genes result from each data analysis.  相似文献   
38.

Introduction

Hyperuricemia is the greatest risk factor for gout and is caused by an overproduction and/or inefficient renal clearance of urate. The fractional renal clearance of urate (FCU, renal clearance of urate/renal clearance of creatinine) has been proposed as a tool to identify subjects who manifest inefficient clearance of urate. The aim of the present studies was to validate the measurement of FCU by using spot-urine samples as a reliable indicator of the efficiency of the kidney to remove urate and to explore its distribution in healthy subjects and gouty patients.

Methods

Timed (spot, 2-hour, 4-hour, 6-hour, 12-hour, and 24-hour) urine collections were used to derive FCU in 12 healthy subjects. FCUs from spot-urine samples were then determined in 13 healthy subjects twice a day, repeated on 3 nonconsecutive days. The effect of allopurinol, probenecid, and the combination on FCU was explored in 11 healthy subjects. FCU was determined in 36 patients with gout being treated with allopurinol. The distribution of FCU was examined in 118 healthy subjects and compared with that from the 36 patients with gout.

Results

No substantive or statistically significant differences were observed between the FCUs derived from spot and 24-hour urine collections. Coefficients of variation (CVs) were both 28%. No significant variation in the spot FCU was obtained either within or between days, with mean intrasubject CV of 16.4%. FCU increased with probenecid (P < 0.05), whereas allopurinol did not change the FCU in healthy or gouty subjects. FCUs of patients with gout were lower than the FCUs of healthy subjects (4.8% versus 6.9%; P < 0.0001).

Conclusions

The present studies indicate that the spot-FCU is a convenient, valid, and reliable indicator of the efficiency of the kidney in removing urate from the blood and thus from tissues. Spot-FCU determinations may provide useful correlates in studies investigating molecular mechanisms underpinning the observed range of efficiencies of the kidneys in clearing urate from the blood.

Trial Registration

ACTRN12611000743965  相似文献   
39.
The objective of this study was to fully characterize normosmic perception of stimuli expected to cause widely varying degrees of olfactory and nasal trigeminal stimulation and to directly evaluate the possible role of olfactory nerve stimulation in nasal irritation sensitivity. During each of four identical test sessions, four anosmic and 31 normosmic participants were presented with a range of concentrations extending from peri-threshold for normosmics to supra- threshold for anosmics. For each session, odor (O) and nasal irritation (NI) sensitivities were summarized in terms of the concentrations required to produce four sensation levels ('iso-response' concentrations). Within-participant variation in these iso-response concentrations was < 10-fold for 95% of normosmics, for both O and NI. For O but not NI, these apparent fluctuations in sensitivity were largely accounted for by the uncertainty surrounding the iso-response concentrations calculated for each session. Anosmics exhibited minimal within- and between-participant variation in NI and required, for all but the highest perceptual level, a higher concentration than almost all normosmics. Between-participant variation, expressed in terms of 90% confidence interval widths, was approximately 0.5 log units for both O and NI for the highest perceptual level, but increased to approximately 0.8 and 1.8 log units, respectively, for the lowest (peri- threshold) level. Our findings suggest that: (i) most apparent variation over time in O sensitivity is actually a reflection of the uncertainty surrounding estimates of sensitivity obtained for each session; (ii) within- and between-participant variation in O sensitivity is far less than is commonly reported; and (iii) low to moderate levels of NI in normosmics are the result of relatively weak trigeminal stimulation combined with much greater olfactory activation.   相似文献   
40.
Blood samples from the Waskia and Takia populations of Karkar Island, Papua New Guinea, and other nearby mainland populations, were tested for genetic variation in blood group, serum protein and red cell enzyme systems. Polymorphic variation was present in the ABO, P, MNS, Rh, Lewis, Duffy, Kidd and Gerbich blood group systems, in the Hp and Tf serum protein systems, and in the acid phosphatase, 6-PGD, ADA, PGM, MDH, and G-6-PD enzyme systems. A small number of variants was found in other systems: there were 4 Lu(a+), 1 Kp(a+), 2 C variants in the acid phosphatase system, 6 LDH variants, 1 ADA3-1 and 1 AK2-1 sample. All samples were negative for the red cell antigens Cw, Vw, He, K, Jsa, Dia, Wra, Rd and Marriott, and no variation was observed in the PHI enzyme system. The results are discussed in relation to those obtained on other Papua New Guinea populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号