首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4527篇
  免费   466篇
  国内免费   1篇
  4994篇
  2023年   19篇
  2022年   49篇
  2021年   78篇
  2020年   65篇
  2019年   60篇
  2018年   64篇
  2017年   74篇
  2016年   134篇
  2015年   200篇
  2014年   242篇
  2013年   265篇
  2012年   344篇
  2011年   356篇
  2010年   225篇
  2009年   197篇
  2008年   263篇
  2007年   278篇
  2006年   288篇
  2005年   233篇
  2004年   242篇
  2003年   207篇
  2002年   171篇
  2001年   62篇
  2000年   58篇
  1999年   62篇
  1998年   49篇
  1997年   41篇
  1996年   33篇
  1995年   31篇
  1994年   26篇
  1993年   25篇
  1992年   33篇
  1991年   42篇
  1990年   39篇
  1989年   30篇
  1988年   36篇
  1987年   27篇
  1986年   24篇
  1985年   30篇
  1984年   23篇
  1983年   27篇
  1981年   14篇
  1980年   18篇
  1978年   13篇
  1977年   21篇
  1976年   13篇
  1973年   19篇
  1971年   14篇
  1970年   15篇
  1969年   18篇
排序方式: 共有4994条查询结果,搜索用时 15 毫秒
111.
CD47 is a ubiquitously expressed plasma membrane protein, also known as Integrin Associated Protein, that modulates cell adhesion both through alteration of the avidity of integrin binding and through interaction with its own ligands, the extracellular matrix protein thrombospondin (TSP) and the plasma membrane response regulator SIRPalpha1. We now show that CD47 expression on fibroblasts can induce intercellular adhesion resulting in cell aggregation in the absence of active integrins, SIRPalpha1 binding, and detectable TSP. CD47-expressing cells preferentially bind to other CD47-expressing cells, and intercellular adhesion requires stimulation by serum or a CD47-binding peptide from TSP. Cell-cell adhesion is inhibited by pertussis toxin and C. difficile toxin B, and both adherent and aggregating CD47-expressing fibroblasts have more rac in the GTP bound state than CD47-deficient cells. Spontaneous migration of Jurkat lymphocytes through a fibroblast monolayer is decreased by fibroblast expression of CD47, consistent with an increased barrier function of the CD47 expressing cells. The lymphocyte chemoattractant SDF-1alpha stimulates migration of Jurkat cells through this monolayer only if both the lymphocytes and fibroblasts express CD47, and the inhibition of migration by a CD47-interacting peptide from TSP similarly requires CD47 expression on both cell types. Thus, signaling dependent on both heterotrimeric and rho family GTPases can induce CD47 to participate in cell-cell interactions independent of known ligands that enhance intercellular adhesion and modulate cell migration.  相似文献   
112.
Low concentrations of antibiotics can inhibit microbial adherence to medical device surfaces. However, little is known about the changes that occur in the physiology of bacteria within biofilms formed in the presence of subinhibitory (sub-MIC) concentrations of antibiotics. In this study, the densities and matrix compositions ofbiofilms formed by two coagulase-negative Staphylococcus species in the absence and in the presence of sub-MIC concentrations of dicloxacillin were evaluated. Biofilms formed in the presence of sub-MIC concentrations of dicloxacillin contained less biomass, and there were notable changes in the composition of the biofilm matrix. Changes in the spatial structure were also verified by confocal scanning laser microscopy, indicating that biofilms grown in the presence of sub-MIC concentrations of dicloxicilln had a lower cell density. Physiological alterations in the bacteria within biofilms grown in the presence of subinhibitory concentrations of the antibiotic were also evaluated. The results showed that there were differences in bacterial surface characteristics when cultures were grown in the presence of sub-MIC concentrations of dicloxacillin, including decreased hydrophobicity and decreased expression of the exopolysaccharide poly-N-acetylglucosamine. The elemental composition of the cell surface was also analyzed, and whereas in Staphylococcus epidermidis there were decreases in the oxygen and nitrogen contents, in Staphylococcus haemolyticus there were increases in these two parameters. Additionally, increases in resistance to several antibiotics were observed for the cells within biofilms formed in the presence of dicloxacillin.  相似文献   
113.
Angelman syndrome is a neurodevelopmental disorder characterized by mental retardation, severe speech disorder, facial dysmorphism, secondary microcephaly, ataxia, seizures, and abnormal behaviors such as easily provoked laughter. It is most frequently caused by a de novo maternal deletion of chromosome 15q11–q13 (about 70–90%), but can also be caused by paternal uniparental disomy of chromosome 15q11–q13 (3–7%), an imprinting defect (2–4%) or in mutations in the ubiquitin protein ligase E3A gene UBE3A mostly leading to frame shift mutation. In addition, for patients with overlapping clinical features (Angelman-like syndrome), mutations in methyl-CpG binding protein 2 gene MECP2 and cyclin-dependent kinase-like 5 gene CDKL5 as well as a microdeletion of 2q23.1 including the methyl-CpG binding domain protein 5 gene MBD5 have been described. Here, we describe a patient who carries a de novo 5 Mb-deletion of chromosome 15q11.2–q13.1 known to be associated with Angelman syndrome and a further, maternally inherited deletion 2q21.3 (~ 364 kb) of unknown significance. In addition to classic features of Angelman syndrome, she presented with severe infections in the first year of life, a symptom that has not been described in patients with Angelman syndrome. The 15q11.2–q13.1 deletion contains genes critical for Prader–Willi syndrome, the Angelman syndrome causing genes UBE3A and ATP10A/C, and several non-imprinted genes: GABRB3 and GABRA5 (both encoding subunits of GABA A receptor), GOLGA6L2, HERC2 and OCA2 (associated with oculocutaneous albinism II). The deletion 2q21.3 includes exons of the genes RAB3GAP1 (associated with Warburg Micro syndrome) and ZRANB3 (not disease-associated). Despite the normal phenotype of the mother, the relevance of the 2q21.3 microdeletion for the phenotype of the patient cannot be excluded, and further case reports will need to address this point.  相似文献   
114.
Cystic fibrosis (CF) is a fatal genetic disease caused by mutations in cftr, a gene encoding a PKA-regulated Cl(-) channel. The most common mutation results in a deletion of phenylalanine at position 508 (DeltaF508-CFTR) that impairs protein folding, trafficking, and channel gating in epithelial cells. In the airway, these defects alter salt and fluid transport, leading to chronic infection, inflammation, and loss of lung function. There are no drugs that specifically target mutant CFTR, and optimal treatment of CF may require repair of both the folding and gating defects. Here, we describe two classes of novel, potent small molecules identified from screening compound libraries that restore the function of DeltaF508-CFTR in both recombinant cells and cultures of human bronchial epithelia isolated from CF patients. The first class partially corrects the trafficking defect by facilitating exit from the endoplasmic reticulum and restores DeltaF508-CFTR-mediated Cl(-) transport to more than 10% of that observed in non-CF human bronchial epithelial cultures, a level expected to result in a clinical benefit in CF patients. The second class of compounds potentiates cAMP-mediated gating of DeltaF508-CFTR and achieves single-channel activity similar to wild-type CFTR. The CFTR-activating effects of the two mechanisms are additive and support the rationale of a drug discovery strategy based on rescue of the basic genetic defect responsible for CF.  相似文献   
115.
The mechanism by which cyclin-dependent kinase 4 (CDK4) regulates cell cycle progression is not entirely clear. Cyclin D/CDK4 appears to initiate phosphorylation of retinoblastoma protein (Rb) leading to inactivation of the S-phase-inhibitory action of Rb. However, cyclin D/CDK4 has been postulated to act in a noncatalytic manner to regulate the cyclin E/CDK2-inhibitory activity of p27(Kip1) by sequestration. In this study we investigated the roles of CDK4 in cell cycle regulation by targeted disruption of the mouse CDK4 gene. CDK4(-/-) mice survived embryogenesis and showed growth retardation and reproductive dysfunction associated with hypoplastic seminiferous tubules in the testis and perturbed corpus luteum formation in the ovary. These phenotypes appear to be opposite to those of p27-deficient mice such as gigantism and gonadal hyperplasia. A majority of CDK4(-/-) mice developed diabetes mellitus by 6 weeks, associated with degeneration of pancreatic islets. Fibroblasts from CDK4(-/-) mouse embryos proliferated similarly to wild-type embryonic fibroblasts under conditions that promote continuous growth. However, quiescent CDK4(-/-) fibroblasts exhibited a substantial ( approximately 6-h) delay in S-phase entry after serum stimulation. This cell cycle perturbation by CDK4 disruption was associated with increased binding of p27 to cyclin E/CDK2 and diminished activation of CDK2 accompanied by impaired Rb phosphorylation. Importantly, fibroblasts from CDK4(-/-) p27(-/-) embryos displayed partially restored kinetics of the G(0)-S transition, indicating the significance of the sequestration of p27 by CDK4. These results suggest that at least part of CDK4's participation in the rate-limiting mechanism for the G(0)-S transition consists of controlling p27 activity.  相似文献   
116.
Low concentrations of branched-chain fatty acids, such as isobutyric and isovaleric acids, develop during the ripening of hard cheeses and contribute to the beneficial flavor profile. Catabolism of amino acids, such as branched-chain amino acids, by bacteria via aminotransferase reactions and α-keto acids is one mechanism to generate these flavorful compounds; however, metabolism of α-keto acids to flavor-associated compounds is controversial. The objective of this study was to determine the ability of Brevibacterium linens BL2 to produce fatty acids from amino acids and α-keto acids and determine the occurrence of the likely genes in the draft genome sequence. BL2 catabolized amino acids to fatty acids only under carbohydrate starvation conditions. The primary fatty acid end products from leucine were isovaleric acid, acetic acid, and propionic acid. In contrast, logarithmic-phase cells of BL2 produced fatty acids from α-keto acids only. BL2 also converted α-keto acids to branched-chain fatty acids after carbohydrate starvation was achieved. At least 100 genes are potentially involved in five different metabolic pathways. The genome of B. linens ATCC 9174 contained these genes for production and degradation of fatty acids. These data indicate that brevibacteria have the ability to produce fatty acids from amino and α-keto acids and that carbon metabolism is important in regulating this event.  相似文献   
117.
Mapping biological diversity is a high priority for conservation research, management and policy development, but few studies have provided diversity data at high spatial resolution from remote sensing. We used airborne imaging spectroscopy to map woody vascular plant species richness in lowland tropical forest ecosystems in Hawai’i. Hyperspectral signatures spanning the 400–2,500 nm wavelength range acquired by the NASA Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) were analyzed at 17 forest sites with species richness values ranging from 1 to 17 species per 0.1–0.3 ha. Spatial variation (range) in the shape of the AVIRIS spectra (derivative reflectance) in wavelength regions associated with upper-canopy pigments, water, and nitrogen content were well correlated with species richness across field sites. An analysis of leaf chlorophyll, water, and nitrogen content within and across species suggested that increasing spectral diversity was linked to increasing species richness by way of increasing biochemical diversity. A linear regression analysis showed that species richness was predicted by a combination of four biochemically-distinct wavelength observations centered at 530, 720, 1,201, and 1,523 nm (r 2 = 0.85, p < 0.01). This relationship was used to map species richness at approximately 0.1 ha resolution in lowland forest reserves throughout the study region. Future remote sensing studies of biodiversity will benefit from explicitly connecting chemical and physical properties of the organisms to remotely sensed data.  相似文献   
118.
The apparent extravagance of begging displays is usually attributed to selection for features, such as loud calls, that make the signal costly and hence reliable. An alternative explanation, however, is that these design features are needed for effective signal transmission and reception. Here, we test the latter hypothesis by examining how the begging calls of tree swallow (Tachycineta bicolor) nestlings and the response to these calls by parents are affected by ambient noise. In a field study, we found that call length, amplitude and frequency range all increased with increasing noise levels at nests. In the laboratory, however, only call amplitude increased in response to the playback of noise to nestlings. In field playbacks to parents, similar levels of noise abolished parental preferences for higher call rates, but the preference was restored when call amplitude was increased to the level that nestlings had used in the laboratory study. Our results show that nestling birds, like other acoustic signallers, consistently increase call amplitude in response to ambient noise and this response appears to enhance discrimination by receivers. Thus, selection for signal efficacy may explain some of the seemingly extravagant features of begging displays.  相似文献   
119.
120.
Agonist-promoted desensitization of G-protein-coupled receptors results in partial uncoupling of receptor from cognate G-protein, a process that provides for rapid adaptation to the signaling environment. This property plays important roles in physiologic and pathologic processes as well as therapeutic efficacy. However, coupling is also influenced by polymorphic variation, but the relative impact of these two mechanisms on signal transduction is not known. To determine this we utilized recombinant cells expressing the human beta(1)-adrenergic receptor (beta(1)AR) or a gain-of-function polymorphic variant (beta(1)AR-Arg(389)), and the beta(2)-adrenergic receptor (beta(2)AR) or a loss-of-function polymorphic receptor (beta(2)AR-Ile(164)). Adenylyl cyclase activities were determined with multiple permutations of the possible states of the receptor: genotype, basal, or agonist stimulated and with or without agonist pre-exposure. For the beta(1)AR, the enhanced function of the Arg(389) receptor underwent less agonist-promoted desensitization compared with its allelic counterpart. Indeed, the effect of polymorphic variation on absolute adenylyl cyclase activities was such that desensitized beta(1)AR-Arg(389) signaling was equivalent to non-desensitized wild-type beta(1)AR; that is, the genetic component had as much impact as desensitization on receptor coupling. In contrast, the enhanced signaling of wild-type beta(2)AR underwent less desensitization compared with beta(2)AR-Ile(164), thus the heterogeneity in absolute signaling was markedly broadened by this polymorphism. Inverse agonist function was not affected by polymorphisms of either subtype. A general model is proposed whereby up to 10 levels of signaling by G-protein-coupled receptors can be present based on the influences of desensitization and genetic variation on coupling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号