首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1865篇
  免费   206篇
  国内免费   1篇
  2072篇
  2021年   18篇
  2020年   11篇
  2018年   21篇
  2017年   23篇
  2016年   43篇
  2015年   61篇
  2014年   76篇
  2013年   106篇
  2012年   84篇
  2011年   99篇
  2010年   93篇
  2009年   83篇
  2008年   78篇
  2007年   71篇
  2006年   93篇
  2005年   80篇
  2004年   74篇
  2003年   58篇
  2002年   52篇
  2001年   52篇
  2000年   51篇
  1999年   36篇
  1998年   21篇
  1997年   34篇
  1996年   19篇
  1995年   19篇
  1994年   19篇
  1993年   21篇
  1992年   29篇
  1991年   37篇
  1990年   30篇
  1989年   26篇
  1988年   40篇
  1987年   24篇
  1986年   19篇
  1985年   27篇
  1984年   23篇
  1983年   29篇
  1982年   25篇
  1981年   15篇
  1980年   16篇
  1978年   12篇
  1977年   24篇
  1976年   16篇
  1975年   14篇
  1973年   19篇
  1972年   12篇
  1971年   15篇
  1970年   15篇
  1969年   18篇
排序方式: 共有2072条查询结果,搜索用时 15 毫秒
31.
Intracellular Ca2+ mobilization events were assessed in mouse L cells, which contain native prostaglandin E1 receptors and transfected human 2 adrenergic receptors. Both Fura2 (single cell measurements) and Quin 2, (cuvette assays) were used to determine [Ca2+]i levels. Our results demonstrate that in the transfected cells there is a dose-dependent increase in [Ca2+]i in response to isoproterenol (0.1 nM–100 nM), which is inhibited by the -adrenergic antagonist, propranolol, and is a result of intracellular Ca2+ release. [Ca2+]1 in these cells was also increased by prostaglandin E1, 8 bromo cyclic AMP, and aluminum fluoride. Both 8 bromo cAMP and isoproterenol induced a rapid increase in the levels of IP1, IP2, and IP3. The data presented demonstrate that the elevation of intracellular cyclic AMP induces an increase in IP3 production which leads to an elevation in [Ca2+];. We propose that this cyclic AMP dependent activation of the IP3 generating system occurs at a post-receptor site.Abbreviations cAMP Adenosine Cyclic 3-5-Monophosphate - [Ca2+]i intracellular [Ca2+]i - 8 Br cAMP 8 Bromo Adenosine Cyclic 3-5-Monophosphate - DAG Diacylglycerol - EGTA] [Ethylene Bis (oxyethylenenitrilo)] Tetracetic acid - BSA Bovine Serum Albumin - HBSS-H Hanks' Balanced Salt Solution buffered with HEPES to pH 7.4 - HEPES 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid - PIP2 Phosphatidylinositol 4,5-bisphosphate - IP2 Inositol 4 Phosphate - IP2 Inositol 4,5 Bisphosphate - IP3 Inositol Trisphosphate - PGE1 Prostaglandin E1 - PBS Phosphate Buffered Saline Solution  相似文献   
32.
Wolfgang Horn 《Hydrobiologia》1991,225(1):115-120
Planktonic crustacean biomass as well as structure are important factors influencing water transparency. The significant dependence of the water quality (Secchi depth) on the concentration and the share of the Daphnia biovolume and not on the total Crustacea biovolume in the Saidenbach reservoir indicates that the density of the Crustacea is only a measure of the cleaning performance, if Daphnia dominates. Using the mean size, the influence of the crustacean structure on the Secchi depth can be recorded. If big size categories prevail (like Daphnia) the water transparency is high. The mainly occurrence of little species (Mesocyclops, Bosmina) results in lower Secchi depths. However, a well defined (significant) relationship is being prevented by the different feeding behaviour of the several species.  相似文献   
33.
Angelman syndrome is a neurodevelopmental disorder characterized by mental retardation, severe speech disorder, facial dysmorphism, secondary microcephaly, ataxia, seizures, and abnormal behaviors such as easily provoked laughter. It is most frequently caused by a de novo maternal deletion of chromosome 15q11–q13 (about 70–90%), but can also be caused by paternal uniparental disomy of chromosome 15q11–q13 (3–7%), an imprinting defect (2–4%) or in mutations in the ubiquitin protein ligase E3A gene UBE3A mostly leading to frame shift mutation. In addition, for patients with overlapping clinical features (Angelman-like syndrome), mutations in methyl-CpG binding protein 2 gene MECP2 and cyclin-dependent kinase-like 5 gene CDKL5 as well as a microdeletion of 2q23.1 including the methyl-CpG binding domain protein 5 gene MBD5 have been described. Here, we describe a patient who carries a de novo 5 Mb-deletion of chromosome 15q11.2–q13.1 known to be associated with Angelman syndrome and a further, maternally inherited deletion 2q21.3 (~ 364 kb) of unknown significance. In addition to classic features of Angelman syndrome, she presented with severe infections in the first year of life, a symptom that has not been described in patients with Angelman syndrome. The 15q11.2–q13.1 deletion contains genes critical for Prader–Willi syndrome, the Angelman syndrome causing genes UBE3A and ATP10A/C, and several non-imprinted genes: GABRB3 and GABRA5 (both encoding subunits of GABA A receptor), GOLGA6L2, HERC2 and OCA2 (associated with oculocutaneous albinism II). The deletion 2q21.3 includes exons of the genes RAB3GAP1 (associated with Warburg Micro syndrome) and ZRANB3 (not disease-associated). Despite the normal phenotype of the mother, the relevance of the 2q21.3 microdeletion for the phenotype of the patient cannot be excluded, and further case reports will need to address this point.  相似文献   
34.

Introduction

Rheumatoid arthritis (RA) is an autoimmune disease characterized by inflammation of the joints and the presence of autoantibodies directed against proteins containing the non-standard arginine-derived amino acid citrulline. The protein fibrinogen, which has an essential role in blood clotting, is one of the most prominent citrullinated autoantigens in RA, particularly because it can be found in the inflamed tissue of affected joints. Here, we set out to analyze the presence of citrullinated endogenous peptides in the synovial fluid of RA and arthritic control patients.

Methods

Endogenous peptides were isolated from the synovial fluid of RA patients and controls by filtration and solid phase extraction. The peptides were identified and quantified using high-resolution liquid chromatography-mass spectrometry.

Results

Our data reveal that the synovial fluid of RA patients contains soluble endogenous peptides, derived from fibrinogen, containing significant amounts of citrulline residues and, in some cases, also phosphorylated serine. Several citrullinated peptides are found to be more abundantly present in the synovial fluid of RA patients compared to patients suffering from other inflammatory diseases affecting the joints.

Conclusions

The increased presence of citrullinated peptides in RA patients points toward a possible specific role of these peptides in the immune response at the basis of the recognition of citrullinated peptides and proteins by RA patient autoantibodies.  相似文献   
35.
Potassium (K) is one of the major nutrients that is essential for plant growth and development. The majority of cellular K+ resides in the vacuole and tonoplast K+ channels of the TPK (Two Pore K) family are main players in cellular K+ homeostasis. All TPK channels were previously reported to be expressed in the tonoplast of the large central lytic vacuole (LV) except for one isoform in Arabidopsis that resides in the plasma membrane. However, plant cells often contain more than one type of vacuole that coexist in the same cell. We recently showed that two TPK isoforms (OsTPKa and OsTPKb) from Oryza sativa localize to different vacuoles with OsTPKa predominantly found in the LV tonoplast and OsTPKb primarily in smaller compartments that resemble small vacuoles (SVs). Our study further revealed that it is the C-terminal domain that determines differential targeting of OsTPKa and OsTPKb. Three C-terminal amino acids were particularly relevant for targeting TPKs to their respective endomembranes. In this addendum we further evaluate how the different localization of TPKa and TPKb impact on their physiological role and how TPKs provide a potential tool to study the physiology of different types of vacuole.Key words: TPK channels, small vacuoles, vacuolar targeting, potassiumThe roles of plant vacuolar K+ channels are diverse and include potassium homeostasis, turgor regulation and responses to abiotic stress. Vacuolar K+-selective channels belong to two-pore K+ (TPK) channel families which have been found in genomes of many plant species such as Arabidopsis, poplar, Physcomitrella, Eucalyptus, barley, potato, rice and tobacco (Fig. 1). TPKs have structural similarity to mammalian “tandem P domain” channels with a secondary structure that contains four transmembrane domains and two pore regions (Fig. 2).15 TPK channels have pore regions with a GYGD signature that endows K+ selectivity and a variable number of Ca2+ binding EF domains in the C terminus.38 One of the best characterized members of the TPK family is AtTPK1 from Arabidopsis thaliana. AtTPK1 activity is voltage independent but sensitive to cytosolic Ca2+, cytosolic pH and N-terminal phosphorylation by 14-3-3 proteins.5,6,8,9 In Arabidopsis, AtTPK1 expresses in the large lytic vacuole (LV) and plays roles in cellular K+ homeostasis, K+-release during stomatal closure and seed germination.4,5 Other members of the Arabidopsis TPK family (AtTPK2, AtTPK3, AtTPK5) have been shown to localize to the LV but also showed some expression in smaller, vesicle-like, compartments.4 However, none of these isoforms appears to form functional channels in planta although our experiments with heterologous expression of AtTPK3 and AtTPK5 in the K+ uptake deficient E. coli LB2003 demonstrates complementation of bacterial growth phenotype (Isayenkov S, et al. unpublished results). Equally intriguing, is the plasma membrane localization of the Arabidopsis TPK4 isoform, in spite of its sequence being very similar to that of other TPKs.10Open in a separate windowFigure 1Phylogenetic tree of plant TPKs. The three main clusters of TPKs comprise: Cluster 1 with AtTPK1-like channels; Cluster 2 with AtTPK3/TPK5-like channels; Cluster 3 with barley HvTPKb. Bootstrap analysis was performed using ‘Molecular Evolutionary Genetics Analysis, MEGA4’ software available at www.megasoftware.net/mega4/megaOpen in a separate windowFigure 2Two-pore potassium channel secondary structure. TPK channels comprise four transmembrane domains (1–4) and two pore regions (P) per subunit. Functional channels are formed from two subunits. In most TPKs, both P regions contain a K+ selectivity signature, GYGD. However, the tobacco NtTPKa isoform has different motifs in the second P domain. In the N terminal region, TPKs have a 14-3-3 binding domain that impact on channel activity, with the binding of 14-3-3 protein leading to channel activation. C-termini of TPKs show a varying number of putative Ca2+ binding “EF hands” which may vary from zero to two.  相似文献   
36.
GM-CSF stimulates proliferation of myeloid precursors in bone marrow and primes mature leukocytes for enhanced functionality. We demonstrate that GM-CSF is a powerful chemotactic and chemokinetic agent for human neutrophils. GM-CSF-induced chemotaxis is time dependent and is specifically neutralized with Abs directed to either the ligand itself or its receptor. Maximal chemotactic response was achieved at approximately 7 nM GM-CSF, and the EC(50) was approximately 0.9 nM. Both concentrations are similar to the effective concentrations of IL-8 and less than the effective concentrations of other neutrophil chemoattractants such as neutrophil-activating peptide-78, granulocyte chemotactic protein-2, leukotriene B(4), and FMLP. GM-CSF also acts as a chemoattractant for native cells bearing the GM-CSF receptor, such as monocytes, as well as for GM-CSF receptor-bearing myeloid cell lines, HL60 (promyelomonocyte leukemic cell line) and MPD (myeloproliferative disorder cell line), following differentiation induction. GM-CSF induced a rapid, transient increase in F-actin polymerization and the formation of focal contact rings in neutrophils, which are prerequisites for cell migration. The mechanism of GM-CSF-induced chemotaxis appears to involve the cell signaling molecule, ribosomal p70 S6 kinase (p70S6K). Both p70S6K enzymatic activity and T(421)/S(424) and T(389) phosphorylation are markedly increased with GM-CSF. In addition, the p70S6K inhibitor hamartin transduced into cells as active protein, interfered with GM-CSF-dependent migration, and attenuated p70S6K phosphorylation. These data indicate that GM-CSF exhibits chemotactic functionality and suggest new avenues for the investigation of the molecular basis of chemotaxis as it relates to inflammation and tissue injury.  相似文献   
37.
Summary An efrotomycin fermentation was characterized through physical, chemical and biochemical studies. Growth of the actinomycete,Nocardia lactamdurans occurred during the first 50 h of the fermentation cycle at the expense of glucose, protein, and triglycerides. The initiation of efrotomycin biosynthesis was observed when glucose dropped to a low concentration. Upon glucose depletion, cell growth ceased and a switch in the respiratory quotient occurred. Efrotomycin biosynthesis was supported by the utilization of soybean oil and starch. Analysis of triglyceride metabolism showed that no diglycerides or monoglycerides accumulated during the fermentation. The activity of extracellular enzymes (lipase, protease, and amylase) increase during the cell growth phase and decreased significantly after 150 h. The concentrations of DNA, tetrahydro-vitamin K2 (a membrane component), and free amino acids in the supernatant increased dramatically late in the fermentation cycle (225 h), indicating massive cell lysis. During this same time period, a reduction in cellular respiratory activity and efrotomycin biosynthesis were observed.  相似文献   
38.
39.
The purpose of this study was to investigate the effect of metal-catalyzed oxidation by H2O2 on the structure, oligomerization, and chaperone function of αA- and αB-crystallins. Recombinant αA-and αB-crystallins were prepared by expressing them in E. coli and purifying by size-exclusion chromatography. They were incubated with 1.5 mM H2O2 and 0.1 mM FeCl3 at 37 C for 24 hrs and the reaction was stopped by adding catalase. Structural changes due to oxidation were ascertained by circular dichroism (CD) measurements and chaperone activity was assayed with alcohol dehydrogenase (ADH) and insulin as target proteins. The oligomeric nature of the oxidized proteins was assessed by molecular sieve HPLC. The secondary structure of the oxidized αA- and αB-crystallins has been substantially altered due to significant increase in random coils, in addition to decrease in β-sheet or α-helix contents. The tertiary structure also showed significant changes indicative of different mode of folding of the secondary structural elements. Chaperone function was significantly compromised as supported by nearly 50% loss in chaperone activity. Oxidation also resulted in the formation of higher molecular weight (HMW) proteins as well as lower molecular weight (LMW) proteins. Thus, oxidation leads to disintegration of the oligomeric structure of αA- and αB-crystallins. Chaperone activity of the HMW fraction is normal whereas the LMW fraction lacks any chaperone activity. So, it appears that the formation of the LMW proteins is the primary cause of the chaperone activity loss due to oxidation.  相似文献   
40.
Human heart Na+ channels were expressed transiently in both mammalian cells and Xenopus oocytes, and Na+ currents measured using 150 mM intracellular Na+. Decreasing extracellular permeant ion concentration decreases outward Na+ current at positive voltages while increasing the driving force for the current. This anomalous effect of permeant ion concentration, especially obvious in a mutant (F1485Q) in which fast inactivation is partially abolished, is due to an alteration of open probability. The effect is only observed when a highly permeant cation (Na+, Li+, or hydrazinium) is substituted for a relatively impermeant cation (K+, Rb+, Cs+, N -methylglucamine, Tris, choline, or tetramethylammonium). With high concentrations of extracellular permeant cations, the peak open probability of Na+ channels increases with depolarization and then saturates at positive voltages. By contrast, with low concentrations of permeant ions, the open probability reaches a maximum at approximately 0 mV and then decreases with further depolarization. There is little effect of permeant ion concentration on activation kinetics at depolarized voltages. Furthermore, the lowered open probability caused by a brief depolarization to +60 mV recovers within 5 ms upon repolarization to −140 mV, indicative of a gating process with rapid kinetics. Tail currents at reduced temperatures reveal the rapid onset of this gating process during a large depolarization. A large depolarization may drive a permeant cation out of a site within the extracellular mouth of the pore, reducing the efficiency with which the channel opens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号