首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1562篇
  免费   189篇
  国内免费   1篇
  2022年   10篇
  2021年   18篇
  2020年   11篇
  2018年   17篇
  2017年   21篇
  2016年   37篇
  2015年   47篇
  2014年   61篇
  2013年   83篇
  2012年   71篇
  2011年   85篇
  2010年   69篇
  2009年   59篇
  2008年   65篇
  2007年   59篇
  2006年   82篇
  2005年   67篇
  2004年   63篇
  2003年   55篇
  2002年   48篇
  2001年   46篇
  2000年   47篇
  1999年   33篇
  1998年   12篇
  1997年   24篇
  1996年   15篇
  1995年   13篇
  1994年   16篇
  1993年   14篇
  1992年   29篇
  1991年   34篇
  1990年   30篇
  1989年   24篇
  1988年   33篇
  1987年   24篇
  1986年   18篇
  1985年   23篇
  1984年   19篇
  1983年   26篇
  1981年   12篇
  1980年   15篇
  1978年   10篇
  1977年   19篇
  1976年   13篇
  1975年   11篇
  1973年   19篇
  1972年   11篇
  1971年   14篇
  1970年   15篇
  1969年   18篇
排序方式: 共有1752条查询结果,搜索用时 15 毫秒
281.
Bacterial endosymbionts of the pine bark adelgid, Pineus strobi (Insecta: Hemiptera: Adelgidae), were investigated using transmission electron microscopy, 16S and 23S rRNA-based phylogeny, and fluorescence in situ hybridization. Two morphologically different symbionts affiliated with the Gammaproteobacteria were present in distinct bacteriocytes. One of them (“Candidatus Annandia pinicola”) is most closely related to an endosymbiont of Adelges tsugae, suggesting that they originate from a lineage already present in ancient adelgids before the hosts diversified into the two major clades, Adelges and Pineus. The other P. strobi symbiont (“Candidatus Hartigia pinicola”) represents a novel symbiont lineage in members of the Adelgidae. Our findings lend further support for a complex evolutionary history of the association of adelgids with a phylogenetically diverse set of bacterial symbionts.  相似文献   
282.
Partial α-amylase gene sequences were determined and α-amylase gene expression was quantified in four species of carnivorous, omnivorous, and herbivorous prickleback fishes (family Stichaeidae) to assess the effects of ontogeny, diet, and species on expression of this gene. Pairwise comparison of α-amylase nucleotide sequences revealed 96–98 % identity, and comparison of amino acid portions revealed 93–95 % similarity among the four prickleback species. Expression was determined using in situ hybridization and intensity of expression quantified using image analysis. Alpha-amylase expression level was compared in three feeding categories of the four species: (1) small, wild-caught carnivorous juveniles; (2) larger, wild-caught juveniles of the carnivorous species and the three that had shifted to herbivory or omnivory; and (3) larger, juveniles produced by feeding a low-starch artificial diet to small juveniles until they reached the size of the larger wild-caught juveniles. The results showed no dietary effect in any species but significant ontogenetic and species-level effects in Cebidichthys violaceus, as well as in the sister species Xiphister mucosus and X. atropurpureus. Based on a phylogeny for the Stichaeidae produced for this study using two mtDNA genes and one nuclear gene, the ontogenetic dietary shifts to herbivory/omnivory evolved independently in C. violaceus and in the clade containing the two species of Xiphister. All three of these species increased α-amylase gene expression with increase in size and had higher expression than Anoplarchus purpurescens, which is a member of a third, stichaeid clade comprising carnivores. These results show the importance of α-amylase in the herbivores and omnivores.  相似文献   
283.
The African trypanosome, Trypanosoma brucei, is a parasitic protozoan that achieves antigenic variation through DNA-repair processes involving Variant Surface Glycoprotein (VSG) gene rearrangements at subtelomeres. Subtelomeric suppression of DNA repair operates in eukaryotes but little is known about these controls in trypanosomes. Here, we identify a trypanosome histone acetyltransferase (HAT3) and a deacetylase (SIR2rp1) required for efficient RAD51-dependent homologous recombination. HAT3 and SIR2rp1 were required for RAD51-focus assembly and disassembly, respectively, at a chromosome-internal locus and a synthetic defect indicated distinct contributions to DNA repair. Although HAT3 promoted chromosome-internal recombination, it suppressed subtelomeric VSG recombination, and these locus-specific effects were mediated through differential production of ssDNA by DNA resection; HAT3 promoted chromosome-internal resection but suppressed subtelomeric resection. Consistent with the resection defect, HAT3 was specifically required for the G2-checkpoint response at a chromosome-internal locus. HAT3 also promoted resection at a second chromosome-internal locus comprising tandem-duplicated genes. We conclude that HAT3 and SIR2rp1 can facilitate temporally distinct steps in DNA repair. HAT3 promotes ssDNA formation and recombination at chromosome-internal sites but has the opposite effect at a subtelomeric VSG. These locus-specific controls reveal compartmentalization of the T. brucei genome in terms of the DNA-damage response and suppression of antigenic variation by HAT3.  相似文献   
284.
285.
286.
In the era of metagenomics and amplicon sequencing, comprehensive analyses of available sequence data remain a challenge. Here we describe an approach exploiting metagenomic and amplicon data sets from public databases to elucidate phylogenetic diversity of defined microbial taxa. We investigated the phylum Chlamydiae whose known members are obligate intracellular bacteria that represent important pathogens of humans and animals, as well as symbionts of protists. Despite their medical relevance, our knowledge about chlamydial diversity is still scarce. Most of the nine known families are represented by only a few isolates, while previous clone library-based surveys suggested the existence of yet uncharacterized members of this phylum. Here we identified more than 22 000 high quality, non-redundant chlamydial 16S rRNA gene sequences in diverse databases, as well as 1900 putative chlamydial protein-encoding genes. Even when applying the most conservative approach, clustering of chlamydial 16S rRNA gene sequences into operational taxonomic units revealed an unexpectedly high species, genus and family-level diversity within the Chlamydiae, including 181 putative families. These in silico findings were verified experimentally in one Antarctic sample, which contained a high diversity of novel Chlamydiae. In our analysis, the Rhabdochlamydiaceae, whose known members infect arthropods, represents the most diverse and species-rich chlamydial family, followed by the protist-associated Parachlamydiaceae, and a putative new family (PCF8) with unknown host specificity. Available information on the origin of metagenomic samples indicated that marine environments contain the majority of the newly discovered chlamydial lineages, highlighting this environment as an important chlamydial reservoir.  相似文献   
287.
288.
Metformin, a biguanide derivate, has pleiotropic effects beyond glucose reduction, including improvement of lipid profiles and lowering microvascular and macrovascular complications associated with type 2 diabetes mellitus (T2DM). These effects have been ascribed to adenosine monophosphate-activated protein kinase (AMPK) activation in the liver and skeletal muscle. However, metformin effects are not attenuated when AMPK is knocked out and intravenous metformin is less effective than oral medication, raising the possibility of important gut pharmacology. We hypothesized that the pharmacology of metformin includes alteration of bile acid recirculation and gut microbiota resulting in enhanced enteroendocrine hormone secretion. In this study we evaluated T2DM subjects on and off metformin monotherapy to characterize the gut-based mechanisms of metformin. Subjects were studied at 4 time points: (i) at baseline on metformin, (ii) 7 days after stopping metformin, (iii) when fasting blood glucose (FBG) had risen by 25% after stopping metformin, and (iv) when FBG returned to baseline levels after restarting the metformin. At these timepoints we profiled glucose, insulin, gut hormones (glucagon-like peptide-1 (GLP-1), peptide tyrosine-tyrosine (PYY) and glucose-dependent insulinotropic peptide (GIP) and bile acids in blood, as well as duodenal and faecal bile acids and gut microbiota. We found that metformin withdrawal was associated with a reduction of active and total GLP-1 and elevation of serum bile acids, especially cholic acid and its conjugates. These effects reversed when metformin was restarted. Effects on circulating PYY were more modest, while GIP changes were negligible. Microbiota abundance of the phylum Firmicutes was positively correlated with changes in cholic acid and conjugates, while Bacteroidetes abundance was negatively correlated. Firmicutes and Bacteroidetes representation were also correlated with levels of serum PYY. Our study suggests that metformin has complex effects due to gut-based pharmacology which might provide insights into novel therapeutic approaches to treat T2DM and associated metabolic diseases.

Trial Registration:

www.ClinicalTrials.gov NCT01357876  相似文献   
289.
290.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号