首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2269篇
  免费   126篇
  国内免费   7篇
  2022年   16篇
  2021年   28篇
  2020年   15篇
  2019年   20篇
  2018年   30篇
  2017年   22篇
  2016年   48篇
  2015年   83篇
  2014年   87篇
  2013年   150篇
  2012年   149篇
  2011年   129篇
  2010年   75篇
  2009年   72篇
  2008年   149篇
  2007年   156篇
  2006年   142篇
  2005年   155篇
  2004年   152篇
  2003年   129篇
  2002年   121篇
  2001年   32篇
  2000年   41篇
  1999年   31篇
  1998年   38篇
  1997年   30篇
  1996年   24篇
  1995年   26篇
  1994年   16篇
  1993年   13篇
  1992年   24篇
  1991年   18篇
  1990年   22篇
  1989年   7篇
  1988年   15篇
  1987年   11篇
  1986年   10篇
  1985年   10篇
  1984年   13篇
  1983年   14篇
  1982年   6篇
  1981年   17篇
  1980年   10篇
  1979年   11篇
  1978年   7篇
  1977年   6篇
  1976年   4篇
  1975年   7篇
  1973年   3篇
  1972年   4篇
排序方式: 共有2402条查询结果,搜索用时 312 毫秒
81.
We recently reported the disruption of the inner mitochondrial membrane peptidase 2-like (IMMP2L) gene by a chromosomal breakpoint in a patient with Gilles de la Tourette syndrome (GTS). In the present study we sought to identify genetic variation in IMMP2L, which, through alteration of protein function or level of expression might contribute to the manifestation of GTS. We screened 39 GTS patients, and, due to the localization of IMMP2L in the critical region for the autistic disorder (AD) locus on chromosome 7q (AUTS1), 95 multiplex AD families; however, no coding mutations were found in either GTS or AD patients. In addition, no parental-specific expression of IMMP2L was detected in somatic cell hybrids containing human chromosome 7 and human cell lines carrying a maternal uniparental disomy for chromosome 7 (mUPD7). Despite the fact that no deleterious mutations in IMMPL2 (other than the inverted duplication identified previously) were identified in either GTS or AD, this gene cannot be excluded as a possible rare cause of either disorder.  相似文献   
82.
Oleanane-type triterpene is one of the most widespread triterpenes found in plants, together with the lupane type, and these two types often occur together in the same plant. Bruguiera gymnorrhiza (L.) Lamk. and Rhizophora stylosa Griff. (Rhizophoraceae) are known to produce both types of triterpenes. Four oxidosqualene cyclase cDNAs were cloned from the leaves of B. gymnorrhiza and R. stylosa by a homology-based PCR method. The ORFs of full-length clones termed BgbAS (2280 bp, coding for 759 amino acids), BgLUS (2286 bp, coding for 761 amino acids), RsM1 (2280 bp, coding for 759 amino acids) and RsM2 (2316 bp coding for 771 amino acids) were ligated into yeast expression plasmid pYES2 under the control of the GAL1 promoter. Expression of BgbAS and BgLUS in GIL77 resulted in the production of beta-amyrin and lupeol, suggesting that these genes encode beta-amyrin and lupeol synthase (LUS), respectively. Furthermore, RsM1 produced germanicol, beta-amyrin, and lupeol in the ratio of 63 : 33 : 4, whereas RsM2 produced taraxerol, beta-amyrin, and lupeol in the proportions 70 : 17 : 13. This result indicates that these are multifunctional triterpene synthases. Phylogenetic analysis and sequence comparisons revealed that BgbAS and RsM1 demonstrated high similarities (78-93%) to beta-amyrin synthases, and were located in the same branch as beta-amyrin synthase. BgLUS formed a new branch for lupeol synthase that was closely related to the beta-amyrin synthase cluster, whereas RsM2 was found in the first branch of the multifunctional triterpene synthase evolved from lupeol to beta-amyrin synthase. Based on these sequence comparisons and product profiles, we discuss the molecular evolution of triterpene synthases and the involvement of these genes in the formation of terpenoids in mangrove leaves.  相似文献   
83.
Sleep and Biological Rhythms - Idiopathic hypersomnia (IH) is a rare sleep disorder characterized by excessive daytime sleepiness, great difficulty upon awakening, and prolonged sleep time. In...  相似文献   
84.
The molecular signals that regulate mitotic spindle orientation to determine the proper division axis play a critical role in the development and maintenance of tissue homeostasis. However, deregulation of signaling events can result in spindle misorientation, which in turn can trigger developmental defects and cancer progression. Little is known about the cellular signaling pathway involved in the misorientation of proliferating cells that evade apoptosis after DNA damage. In this study, we found that perturbations to spindle orientation were induced in ultraviolet C (UVC)-irradiated surviving cells. N-terminal truncated Rho GDP-dissociation inhibitor β (RhoGDIβ), which is produced by UVC irradiation, distorted the spindle orientation of HeLa cells cultured on Matrigel. The short hairpin RNA-mediated knockdown of RhoGDIβ significantly attenuated UVC-induced misorientation. Subsequent expression of wild-type RhoGDIβ, but not a noncleavable mutant, RhoGDIβ (D19A), again led to a relative increase in spindle misorientation in response to UVC. Our findings revealed that RhoGDIβ impacts spindle orientation in response to DNA damage.  相似文献   
85.
Carbohydrate metabolism not only functions in supplying cellular energy but also has an important role in maintaining physiological homeostasis and in preventing oxidative damage caused by reactive oxygen species. Previously, we showed that arthropod embryonic cell lines have high tolerance to H2O2 exposure. Here, we describe that Rhipicephalus microplus tick embryonic cell line (BME26) employs an adaptive glucose metabolism mechanism that confers tolerance to hydrogen peroxide at concentrations too high for other organisms. This adaptive mechanism sustained by glucose metabolism remodeling promotes cell survival and redox balance in BME26 cell line after millimolar H2O2 exposure. The present work shows that this tick cell line could tolerate high H2O2 concentrations by initiating a carbohydrate-related adaptive response. We demonstrate that gluconeogenesis was induced as a compensation strategy that involved, among other molecules, the metabolic enzymes NADP-ICDH, G6PDH, and PEPCK. We also found that this phenomenon was coupled to glycogen accumulation and glucose uptake, supporting the pentose phosphate pathway to sustain NADPH production and leading to cell survival and proliferation. Our findings suggest that the described response is not atypical, being also observed in cancer cells, which highlights the importance of this model to all proliferative cells. We propose that these results will be useful in generating basic biological information to support the development of new strategies for disease treatment and parasite control.  相似文献   
86.
In vivo imaging of model organisms is heavily reliant on fluorescent proteins with high intracellular brightness. Here we describe a practical method for rapid optimization of fluorescent proteins via directed molecular evolution in cultured mammalian cells. Using this method, we were able to perform screening of large gene libraries containing up to 2 × 107 independent random genes of fluorescent proteins expressed in HEK cells, completing one iteration of directed evolution in a course of 8 days. We employed this approach to develop a set of green and near‐infrared fluorescent proteins with enhanced intracellular brightness. The developed near‐infrared fluorescent proteins demonstrated high performance for fluorescent labeling of neurons in culture and in vivo in model organisms such as Caenorhabditis elegans, Drosophila, zebrafish, and mice. Spectral properties of the optimized near‐infrared fluorescent proteins enabled crosstalk‐free multicolor imaging in combination with common green and red fluorescent proteins, as well as dual‐color near‐infrared fluorescence imaging. The described method has a great potential to be adopted by protein engineers due to its simplicity and practicality. We also believe that the new enhanced fluorescent proteins will find wide application for in vivo multicolor imaging of small model organisms.  相似文献   
87.
Ectodomain shedding is an important mechanism to regulate the biological activities of membrane proteins. We focus here on the signaling mechanism of the ectodomain shedding of heparin-binding epidermal growth factor (EGF)-like growth factor (pro HB-EGF). Lysophosphatidic acid (LPA), a ligand for seven-transmembrane G protein-coupled receptors, stimulates the shedding of pro HB-EGF, which constitutes a G protein-coupled receptor-mediated transactivation of the EGF receptor. Experiments using a series of inhibitors and overexpression of mutant forms of signaling molecules revealed that the Ras-Raf-MEK signal is essential for the LPA-induced shedding. In addition, the small GTPase Rac is involved in the LPA-induced shedding, possibly to promote MEK activation. 12-O-Tetradecanoylphorbol-13-acetate is another potent inducer of pro HB-EGF shedding. We also demonstrate that the LPA-induced pathway is distinct from the 12-O-tetradecanoylphorbol-13-acetate-induced pathway and that these pathways constitute a dual signaling cascade that regulates the shedding of pro HB-EGF.  相似文献   
88.
We have recently reported that members of the heparin-binding group II subfamily of secretory PLA(2)s (sPLA(2)s) (types IIA and V), when transfected into 293 cells, released [(3)H]arachidonic acid (AA) preferentially in response to interleukin-1 (IL-1) and acted as "signaling" PLA(2)s that were functionally coupled with prostaglandin biosynthesis. Here we show that these group II subfamily sPLA(2)s and the type X sPLA(2) behave in a different manner, the former being more efficiently coupled with the prostaglandin-biosynthetic pathway than the latter, in 293 transfectants. Type X sPLA(2), which bound only minimally to cell surface proteoglycans, augmented the release of both [(3)H]AA and [(3)H]oleic acid in the presence of serum but not IL-1. Both types IIA and V sPLA(2), the AA released by which was efficiently converted to prostaglandin E(2), markedly augmented IL-1-induced expression of cyclooxygenase (COX)-2 in a heparin-sensitive fashion, whereas type X sPLA(2) lacked the ability to augment COX-2 expression, thereby exhibiting the poor prostaglandin E(2)-biosynthetic response unless either of the COX isozymes was forcibly introduced into type X sPLA(2)-expressing cells. Implication of phospholipid scramblase, an enzyme responsible for the perturbation of plasma membrane asymmetry, revealed that the scramblase-transfected cells became more sensitive to types IIA and V, but not X, sPLA(2), releasing both [(3)H]AA and [(3)H]oleic acid in an IL-1-independent manner. Thus, although phospholipid scramblase-mediated alteration in plasma membrane asymmetry actually led to the increased cellular susceptibility to the group II subfamily of sPLA(2)s, several lines of evidence suggest that it does not entirely mimic their actions on cells after IL-1 signaling. Interestingly, coexpression of type IIA or V, but not X, sPLA(2) and phospholipid scramblase resulted in a marked reduction in cell growth, revealing an unexplored antiproliferative aspect of particular classes of sPLA(2).  相似文献   
89.
The molecular mechanism for the transition from cardiac hypertrophy, an adaptive response to biomechanical stress, to heart failure is poorly understood. The mitogen-activated protein kinase p38alpha is a key component of stress response pathways in various types of cells. In this study, we attempted to explore the in vivo physiological functions of p38alpha in hearts. First, we generated mice with floxed p38alpha alleles and crossbred them with mice expressing the Cre recombinase under the control of the alpha-myosin heavy-chain promoter to obtain cardiac-specific p38alpha knockout mice. These cardiac-specific p38alpha knockout mice were born normally, developed to adulthood, were fertile, exhibited a normal life span, and displayed normal global cardiac structure and function. In response to pressure overload to the left ventricle, they developed significant levels of cardiac hypertrophy, as seen in controls, but also developed cardiac dysfunction and heart dilatation. This abnormal response to pressure overload was accompanied by massive cardiac fibrosis and the appearance of apoptotic cardiomyocytes. These results demonstrate that p38alpha plays a critical role in the cardiomyocyte survival pathway in response to pressure overload, while cardiac hypertrophic growth is unaffected despite its dramatic down-regulation.  相似文献   
90.
The protein kinase Akt participates in such important functions of endothelial cells as nitric oxide production and angiogenesis, activities that involve changes in cytosolic Ca2+ concentration. However, it is not known if activation of Akt is itself involved in the regulation of Ca2+ signals produced in these cells. The objective of this study was to examine if Akt is involved in the regulation of Ca2+ signaling in endothelial cells. Agonist-stimulated Ca2+ signals, assessed using fura-2, were compared in porcine aortic endothelial cells under control conditions or conditions in which Akt was blocked either by different inhibitors of phosphatidylinositol 3-kinase (PI3 kinase)/Akt or by transient expression of a dominant-negative form of Akt (dnAkt). We found that the release of intracellular Ca2+ stores stimulated by bradykinin or thapsigargin is not affected by the PI3 kinase inhibitors LY294002 and wortmannin, or by expression of dnAkt. LY294002 dose-dependently inhibits store-operated Ca2+ entry, an effect not seen with wortmannin. Expression of dnAkt has no effect on store-operated Ca2+ entry. We conclude that Akt is not involved in the regulation of agonist-stimulated Ca2+ signals in endothelial cells. The compound LY294002 inhibits store-operated Ca2+ entry in these cells by a mechanism independent of PI3 kinase/Akt inhibition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号