首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   555篇
  免费   40篇
  2021年   3篇
  2020年   4篇
  2019年   3篇
  2018年   3篇
  2017年   10篇
  2016年   10篇
  2015年   12篇
  2014年   13篇
  2013年   20篇
  2012年   24篇
  2011年   20篇
  2010年   18篇
  2009年   14篇
  2008年   24篇
  2007年   30篇
  2006年   25篇
  2005年   24篇
  2004年   28篇
  2003年   22篇
  2002年   34篇
  2001年   20篇
  2000年   25篇
  1999年   21篇
  1998年   8篇
  1997年   5篇
  1996年   6篇
  1995年   5篇
  1992年   13篇
  1991年   12篇
  1990年   12篇
  1989年   14篇
  1988年   12篇
  1987年   11篇
  1986年   5篇
  1985年   8篇
  1984年   10篇
  1983年   9篇
  1982年   5篇
  1981年   4篇
  1979年   5篇
  1978年   4篇
  1974年   4篇
  1973年   3篇
  1972年   4篇
  1971年   3篇
  1969年   2篇
  1968年   2篇
  1967年   3篇
  1966年   3篇
  1965年   4篇
排序方式: 共有595条查询结果,搜索用时 15 毫秒
101.
There is now mounting evidence that the aryl hydrocarbon receptor (AhR) plays an important role in physiologic responses such as development, cell cycle regulation, immune function and also malignant transformation in various tissues. The strong nuclear AhR expression is observed in the invasive phenotype, and an elevated nuclear AhR expression is associated with a poor prognosis of human prostate cancer. On the other hand, there are conflicting results that the AhR deficiency results in increased susceptibility to prostate tumors in mouse model. In the present study, we investigated AhR expression and its role in the growth and invasiveness of human prostate cancer cells. The AhR protein expression was detected in prostate cancer cell lines and human prostate cancer tissues. A small interfering RNA targeting AhR, constitutive active AhR expression vector, and AhR agonist and antagonist were used to moderate its expression and signaling. The induction of AhR signaling attenuated invasiveness of prostate cancer cells without affecting the cellular growth rate. These results suggest that AhR signaling in prostate cancer cells facilitates invasion of these cells, and modulation with this signaling can be a potential therapeutic target of invasive tumors.  相似文献   
102.
103.
Human induced pluripotent stem cells (hiPSCs) secrete essential autocrine factors that are removed along with toxic metabolites when the growth medium is exchanged daily. In this study, after determining the minimum inhibitory level of lactic acid for hiPSCs, a medium refining system was constructed by which toxic metabolites were removed from used culture medium and autocrine factors as well as other growth factors were recycled. Specifically, about 87 % of the basic fibroblast growth factor and 80 % of transforming growth factor beta 1 were retained in the refined medium after dialysis. The refined medium efficiently potentiated the proliferation of hiPS cells in adherent culture. When the refining system was used to refresh medium in suspension culture, a final cell density of (1.1 ± 0.1) × 106 cells mL?1 was obtained, with 99.5 ± 0.2 % OCT 3/4 and 78.3 ± 1.1 % TRA-1-60 expression, on day 4 of culture. These levels of expression were similar to those observed in the conventional suspension culture. With this method, culture medium refinement by dialysis was established to remove toxic metabolites, recycle autocrine factors as well as other growth factors, and reduce the use of macromolecules for the expansion of hiPSCs in suspension culture.  相似文献   
104.
The light-harvesting chlorophyll a/b-protein complex of photosystem II (LHCII) is the most abundant membrane protein in green plants, and its degradation is a crucial process for the acclimation to high light conditions and for the recovery of nitrogen (N) and carbon (C) during senescence. However, the molecular mechanism of LHCII degradation is largely unknown. Here, we report that chlorophyll b reductase, which catalyzes the first step of chlorophyll b degradation, plays a central role in LHCII degradation. When the genes for chlorophyll b reductases NOL and NYC1 were disrupted in Arabidopsis thaliana, chlorophyll b and LHCII were not degraded during senescence, whereas other pigment complexes completely disappeared. When purified trimeric LHCII was incubated with recombinant chlorophyll b reductase (NOL), expressed in Escherichia coli, the chlorophyll b in LHCII was converted to 7-hydroxymethyl chlorophyll a. Accompanying this conversion, chlorophylls were released from LHCII apoproteins until all the chlorophyll molecules in LHCII dissociated from the complexes. Chlorophyll-depleted LHCII apoproteins did not dissociate into monomeric forms but remained in the trimeric form. Based on these results, we propose the novel hypothesis that chlorophyll b reductase catalyzes the initial step of LHCII degradation, and that trimeric LHCII is a substrate of LHCII degradation.  相似文献   
105.
Drugs targeting the stem-loop IIB of Rev responsible element (RRE) of HIV-1 mRNA are potential therapeutic agents for HIV-1 infection. The stem loop is characterized by an internal loop consist of consecutive G-G and G-A mismatches, which is the single binding site for Rev protein for nuclear export of viral mRNA. We report here that ligands binding to G-G and G-A mismatches in duplex DNA also bind to the internal loop in competition with Rev peptide and lead to the dissociation of pre-formed Rev-RRE complex in a model system.  相似文献   
106.
Mitragynine is an indole alkaloid isolated from the Thai medicinal plant Mitragyna speciosa that is reported to have opioid agonistic properties. The 9-demethyl analogue of mitragynine, 9-hydroxycorynantheidine, is synthesized from mitragynine. 9-Hydroxycorynantheidine inhibited electrically stimulated guinea-pig ileum contraction, but its maximum inhibition was weaker than that of mitragynine and its effect was antagonized by naloxone, suggesting that 9-hydroxycorynantheidine possesses partial agonist properties on opioid receptors. Receptor binding assays revealed that 9-hydroxycorynantheidine has high affinity for mu-opioid receptors. In an assay of the guinea-pig ileum, naloxone shifted the concentration-response curves for [D-Ala(2), N-MePhe(4), Gly-ol(5)]-enkephalin (DAMGO), (5alpha,7alpha,8beta)-(+)-N-Methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4.5]dec-8-yl]-benzeneacetamide (U69593) and 9-hydroxycorynantheidine to the right in a competitive manner. The pA(2) values of naloxone against 9-hydroxycorynantheidine and DAMGO were very similar, but not that against U69593. As indicated by the two assay systems, the opioid effect of 9-hydroxycorynantheidine is selective for the mu-opioid receptor. 9-Hydroxycorynantheidine shifted the concentration-response curve for DAMGO slightly to the right. Pretreatment with the mu-opioid selective and irreversible antagonist beta-funaltorexamine hydrochloride (beta-FNA) shifted the concentration-response curve for DAMGO to the right without affecting the maximum response. On the other hand, beta-FNA did not affect the curve for 9-hydroxycorynantheidine, but decreased the maximum response because of the lack of spare receptors. These studies suggest that 9-hydroxycorynantheidine has partial agonist properties on mu-opioid receptors in the guinea-pig ileum.  相似文献   
107.
Gastric antral area is the most susceptible region to gastric ulceration in man. However, only limited information is available on animal models. In the present paper, we have developed an improved method for inducing gastric antral ulcers by the administration of 1.0 M HCl after refeeding for 1 h in rats. On day 4, the severe ulcer was found covering extensively the whole area of the antrum, and penetrated through the muscularis mucosae. The incidence of ulceration was 100% and the mean ulcer index was 37.1 +/- 16.6 mm2. In contrast, none of the erosive lesions were observed in the corpus area. Before 24 h, only slight hyperemia was observed in the antral region, suggesting that some submucosal mechanisms are involved in the ulceration processes other than the direct erosive action of HCl on the mucosal surface. Additional treatment with diethyldithiocarbamate (125 mg x kg(-1), s.c.), superoxide dismutase inhibitor, significantly aggravated this antral ulcer, and the ulcer index was 66.0 +/- 13.6 mm2. Allopurinol (50 mg x kg(-1), p.o.) significantly prevented ulcer formation induced by HCl plus DDC. GSH (150 mg x kg(-1), i.p.) also markedly prevented the ulceration. However, DMSO (0.5%, 5 mL x kg(-1), p.o.) was found not to affect ulcer formation. Famotidine (20 mg x kg(-1), p.o.) almost completely inhibited ulcer formation. From the above results, it was concluded that gastric antral ulcer can be induced by the simple treatment of 1.0 M HCl in refed rats, and the antrum has a different defensive mechanism from that in the corpus area. In addition. oxygen derived radicals, especially superoxide anion and endogenous acid secretion were found to be involved in the etiology of the aggravation of the gastric antral ulcer induced by DDC.  相似文献   
108.
We have studied the sequence dependent binding of 2-amino-1,8-naphthyridine derivative 1 to a single guanine bulge. The free energy changes for the binding to a guanine bulge with different sequence contexts (5'X_Y3'/3'X'GY'5') were determined by a curve fitting of the thermal denaturation profile of DNA in the presence and absence of 1. The data showed that (i) the binding of 1 to a guanine bulge is stronger for those flanking the G-C base pair than A-T base pair, (ii) the guanine 3' side to 1 in the complex is especially effective for the complex stabilization, and (iii) the increase of T(m) in the presence of 1 is not a good estimate for the sequence dependent binding. The most efficient 1-binding was observed for the sequence of G_G/CGC. Molecular modeling simulations suggested that stacking interaction between the 3' side guanine and 1 is the molecular basis for the strong binding to G_G/CGC.  相似文献   
109.
Saccharomyces cerevisiae sake yeast strain Kyokai no. 7 has one of the highest fermentation rates among brewery yeasts used worldwide; therefore, it is assumed that it is not possible to enhance its fermentation rate. However, in this study, we found that fermentation by sake yeast can be enhanced by inhibiting mitophagy. We observed mitophagy in wild-type sake yeast during the brewing of Ginjo sake, but not when the mitophagy gene (ATG32) was disrupted. During sake brewing, the maximum rate of CO2 production and final ethanol concentration generated by the atg32Δ laboratory yeast mutant were 7.50% and 2.12% higher than those of the parent strain, respectively. This mutant exhibited an improved fermentation profile when cultured under limiting nutrient concentrations such as those used during Ginjo sake brewing as well as in minimal synthetic medium. The mutant produced ethanol at a concentration that was 2.76% higher than the parent strain, which has significant implications for industrial bioethanol production. The ethanol yield of the atg32Δ mutant was increased, and its biomass yield was decreased relative to the parent sake yeast strain, indicating that the atg32Δ mutant has acquired a high fermentation capability at the cost of decreasing biomass. Because natural biomass resources often lack sufficient nutrient levels for optimal fermentation, mitophagy may serve as an important target for improving the fermentative capacity of brewery yeasts.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号