首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   6篇
  2022年   1篇
  2020年   2篇
  2018年   3篇
  2017年   2篇
  2015年   8篇
  2014年   6篇
  2013年   7篇
  2012年   9篇
  2011年   11篇
  2010年   5篇
  2009年   7篇
  2008年   4篇
  2007年   9篇
  2006年   12篇
  2005年   4篇
  2004年   4篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1991年   2篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有119条查询结果,搜索用时 15 毫秒
61.
This study evaluates the in vitro biocompatibility of an injectable and biodegradable polymeric network based on poly(propylene fumarate) (PPF) and the cross-linking agent PPF-diacrylate (PPF-DA). Using a methyl tetrazolium (MTT) assay, the effect of the concentrations of PPF and PPF-DA on the cytotoxicity of its unreacted macromers, cross-linked networks, and degradation products was examined. The influence of network structure properties on cell viability and attachment to the cross-linked material was also investigated. The unreacted macromers exhibited a time- and dose-dependent cytotoxic response that increased with more PPF-DA in the mixture. Conversely, the cross-linked networks formed with more PPF-DA did not demonstrate an adverse response because increases in conversion and cross-linking density prevented the extraction of toxic products. Fibroblast attachment was observed on the PPF/PPF-DA networks with the highest double bond conversions. The degradation products, obtained from the complete breakdown of the networks in basic conditions, displayed a dose-dependent cytotoxic response. These results show that there are concerns regarding the biocompatibility of injectable, biodegradable PPF/PPF-DA networks but also sheds light onto potential mechanisms to reduce the cytotoxic effects.  相似文献   
62.
Gene transfer strategies in tissue engineering   总被引:3,自引:2,他引:1  
Aiming for regeneration of severed or lost parts of the body, the combined application of gene therapy and tissue engineering has received much attention by regenerative medicine. Techniques of molecular biology can enhance the regenerative potential of a biomaterial by co-delivery of therapeutic genes, and several different strategies have been used to achieve that goal. Possibilities for application are many-fold and have been investigated to regenerate tissues such as skin, cartilage, bone, nerve, liver, pancreas and blood vessels. This review discusses advantages and problems encountered with the different gene delivery strategies as far as they relate to tissue engineering, analyses the positive aspects of polymeric gene delivery from matrices and discusses advances and future challenges of gene transfer strategies in selected tissues.  相似文献   
63.
The impedance method has been used extensively to calculate induced electric fields and currents in tissue as a result of applied electromagnetic fields. However, there has previously been no known method for an a priori assessment of the numerical accuracy of the results found by this method. Here, we present a method which permits an a priori assessment of the numerical accuracy of the impedance method applied to physiologically meaningful problems in bioengineering. The assessment method relies on estimating the condition number associated with the impedance matrix for problems with varying shapes, sizes, conductivities, anisotropies, and implementation strategies. Equations have been provided which predict the number of significant figures lost due to poor matrix conditioning as a function of these variables. The results show that, for problems of moderate size and uncomplicated geometry, applied fields should be measured or calculated accurately to at least five or six significant figures. As resolutions are increased and material properties are more widely divergent even more significant figures are needed. The equations provided here should ensure that solutions found from the impedance method are calculated accurately.  相似文献   
64.
65.
The fields of tissue engineering (TE) and regenerative medicine (RegMed) are yet to bring about the anticipated therapeutic revolution. After two decades of extremely high expectations and often disappointing returns both in the medical as well as in the financial arena, this scientific field reflects the sense of a new era and suggests the feeling of making a fresh start although many scientists are probably seeking reorientation. Much of research was industry driven, so that especially in the aftermath of the recent financial meltdown in the last 2 years we have witnessed a biotech asset yard sale. Despite any monetary shortcomings, from a technological point of view there have been great leaps that are yet to find their way to the patient. RegMed is definitely bound to play a major role in our life because it embodies one of the primordial dreams of mankind, such as: everlasting youth, flying, remote communication and setting foot on the moon. The Journal of Cellular and Molecular Medicine has been at the frontier of these developments in TE and RegMed from its beginning and reflects recent scientific advances in both fields. Therefore this review tries to look at RegMed through the keyhole of history which might just be like looking ‘back to the future’.  相似文献   
66.

Background  

The secretin family is a pleotropic group of brain-gut peptides with affinity for class 2 G-protein coupled receptors (secretin family GPCRs) proposed to have emerged early in the metazoan radiation via gene or genome duplications. In human, 10 members exist and sequence and functional homologues and ligand-receptor pairs have been characterised in representatives of most vertebrate classes. Secretin-like family GPCR homologues have also been isolated in non-vertebrate genomes however their corresponding ligands have not been convincingly identified and their evolution remains enigmatic.  相似文献   
67.
68.
Dupuytren's disease, a benign fibroproliferative disorder of the palmar fascia, represents an ideal model to study tissue fibrosis. Transforming growth factor-beta1 (TGF-beta1) and its downstream Smad signalling system is well established as a key player during fibrogenesis. Thus, targeting this basic pathomechanism seems suitable to establish new treatment strategies. One such promising treatment involves the substance N-acetyl-L-cysteine (NAC), shown to have antifibrotic properties in hepatic stellate cells and rat fibroblasts. In order to investigate antifibrotic effects of N-acetyl-L-cysteine (NAC), fibroblasts were isolated from surgically resected fibrotic palmar tissues (Dupuytren fibroblasts, DF) and exposed to different concentrations of NAC and recombinant TGF-beta1. Fibroblasts isolated from tendon pulleys served as controls (control fibroblasts, CF). Smad signalling was investigated by a Smad binding element driven reporter gene analysis. Both cell types express TGF-beta1, indicating autocrine signalling in DF and CF. This was confirmed by comparing reporter gene activity from LacZ and Smad7 adenovirus infected cells. NAC treatment resulted in abrogation of Smad mediated signalling comparable to ectopically overexpressed Smad7, even when the cells were stimulated with recombinant TGF-beta1 or ectopically expressed a constitutively active TGF-beta receptor type I. Additionally, NAC dose-dependently decreased expression of three major indicators of impaired fibrotic matrix turnover, namely alpha-smooth muscle actin (alpha-SMA), alpha 1 type I procollagen (Col1A1), and plasminogen activator inhibitor-type I (PAI-1). Our results suggest that TGF-beta signalling and subsequent expression of fibrogenesis related proteins in Dupuytren's disease is abrogated by NAC thus providing a basis for a therapeutic strategy in Dupuytren's disease and other fibroproliferative disorders.  相似文献   
69.
Tissue engineering of bone: the reconstructive surgeon's point of view   总被引:8,自引:0,他引:8  
Bone defects represent a medical and socioeconomic challenge. Different types of biomaterials are applied for reconstructive indications and receive rising interest. However, autologous bone grafts are still considered as the gold standard for reconstruction of extended bone defects. The generation of bioartificial bone tissues may help to overcome the problems related to donor site morbidity and size limitations. Tissue engineering is, according to its historic definition, an "interdisciplinary field that applies the principles of engineering and the life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function". It is based on the understanding of tissue formation and regeneration and aims to rather grow new functional tissues than to build new spare parts. While reconstruction of small to moderate sized bone defects using engineered bone tissues is technically feasible, and some of the currently developed concepts may represent alternatives to autologous bone grafts for certain clinical conditions, the reconstruction of large-volume defects remains challenging. Therefore vascularization concepts gain on interest and the combination of tissue engineering approaches with flap prefabrication techniques may eventually allow application of bone-tissue substitutes grown in vivo with the advantage of minimal donor site morbidity as compared to conventional vascularized bone grafts. The scope of this review is the introduction of basic principles and different components of engineered bioartificial bone tissues with a strong focus on clinical applications in reconstructive surgery. Concepts for the induction of axial vascularization in engineered bone tissues as well as potential clinical applications are discussed in detail.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号