首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   6篇
  2022年   1篇
  2020年   2篇
  2018年   3篇
  2017年   2篇
  2015年   8篇
  2014年   6篇
  2013年   7篇
  2012年   9篇
  2011年   11篇
  2010年   5篇
  2009年   7篇
  2008年   4篇
  2007年   9篇
  2006年   12篇
  2005年   4篇
  2004年   4篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1991年   2篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有119条查询结果,搜索用时 15 毫秒
101.
The structural genes for nitrogenase, nifK, nifD, and nifH, are crucial for nitrogen fixation. Previous phylogenetic analysis of the amino acid sequence of nifH suggested that this gene had been horizontally transferred from a proteobacterium to the gram-positive/cyanobacterial clade, although the confounding effects of paralogous comparisons made interpretation of the data difficult. An additional test of nif gene horizontal transfer using nifD was made, but the NifD phylogeny lacked resolution. Here nif gene phylogeny is addressed with a phylogenetic analysis of a third and longer nif gene, nifK. As part of the study, the nifK gene of the key taxon Frankia was sequenced. Parsimony and some distance analyses of the nifK amino acid sequences provide support for vertical descent of nifK, but other distance trees provide support for the lateral transfer of the gene. Bootstrap support was found for both hypotheses in all trees; the nifK data do not definitively favor one or the other hypothesis. A parsimony analysis of NifH provides support for horizontal transfer in accord with previous reports, although bootstrap analysis also shows some support for vertical descent of the orthologous nifH genes. A wider sampling of taxa and more sophisticated methods of phylogenetic inference are needed to understand the evolution of nif genes. The nif genes may also be powerful phylogenetic tools. If nifK evolved by vertical descent, it provides strong evidence that the cyanobacteria and proteobacteria are sister groups to the exclusion of the firmicutes, whereas 16S rRNA sequences are unable to resolve the relationships of these three major eubacterial lineages.   相似文献   
102.
Today, liver transplantation is still the only curative treatment for liver failure due to end-stages liver diseases. Donor organ shortage, high cost and the need of immunosuppressive medications are still the major limitations in the field of liver transplantation. Thus, alternative innovative cell-based liver directed therapies, e.g. liver tissue engineering, are under investigation with the aim, that in future an artificial liver tissue could be created and be used for the replacement of the liver function in patients. Using cells instead of organs in this setting should permit (i) expansion of cells in an in vitro phase, (ii) genetic or immunological manipulation of cells for transplantation, (iii) tissue typing and cryopreservation in a cell bank, and (iv) the ex vivo genetic modification of patient's own cells prior re-implantation. Function and differentiation of liver cells are influenced by the three-dimensional organ architecture. The use of polymeric matrices permits the three dimensional formation of a neo-tissue and specific stimulation by adequate modification of the matrix-surface which might be essential for appropriate differentiation of transplanted cells. Additionally, culturing hepatocytes on three dimensional matrices permits culture in a flow bioreactor system with increased function and survival of the cultured cells. Based on bioreactor technology, bioartificial liver devices (BAL) are developed for extracorporeal liver support. Although BALs improved clinical and metabolic conditions, increased patient survival rates have not been proven yet. For intra-corporeal liver replacement, a concept which combines Tissue Engineering using three-dimensional, highly porous matrices with cell transplantation could be useful. In such a concept, whole liver mass transplantation, long term engraftment and function as well as correction of a metabolic defect in animal models could be achieved with a principally reversible procedure. Future studies have to investigate, which environmental conditions and transplantation system would be most suitable for the development of artificial functional liver tissue including blood supply for a potential use in a clinical setting.  相似文献   
103.
Java language has been demonstrated to be an effective tool in supporting medical image viewing in Russia. This evaluation was completed by obtaining a maximum of 20 images, depending on the client's computer workstation from one patient using a commercially available computer tomography (CT) scanner. The images were compared against standard CT images that were viewed at the site of capture. There was no appreciable difference. The client side is a lightweight component that provides an intuitive interface for end users. Each image is loaded in its own thread and the user can begin work after the first image has been loaded. This feature is especially useful on slow connection speed, 9.6 Kbps for example. The server side, which is implemented by the Java Servlet Engine works more effective than common gateway interface (CGI) programs do. Advantages of the Java Technology place this program on the next level of application development. This paper presents a unique application of Java in telemedicine.  相似文献   
104.
Tissue engineering of cultured skin substitutes   总被引:11,自引:0,他引:11  
Skin replacement has been a challenging task for surgeons ever since the introduction of skin grafts by Reverdin in 1871. Recently, skin grafting has evolved from the initial autograft and allograft preparations to biosynthetic and tissue-engineered living skin replacements. This has been fostered by the dramatically improved survival rates of major burns where the availability of autologous normal skin for grafting has become one of the limiting factors. The ideal properties of a temporary and a permanent skin substitute have been well defined. Tissue-engineered skin replacements: cultured autologous keratinocyte grafts, cultured allogeneic keratinocyte grafts, autologous/allogeneic composites, acellular biological matrices, and cellular matrices including such biological substances as fibrin sealant and various types of collagen, hyaluronic acid etc. have opened new horizons to deal with such massive skin loss. In extensive burns it has been shown that skin substitution with cultured grafts can be a life-saving measure where few alternatives exist. Future research will aim to create skin substitutes with cultured epidermis that under appropriate circumstances may provide a wound cover that could be just as durable and esthetically acceptable as conventional split-thickness skin grafts. Genetic manipulation may in addition enhance the performance of such cultured skin substitutes. If cell science, molecular biology, genetic engineering, material science and clinical expertise join their efforts to develop optimized cell culture techniques and synthetic or biological matrices then further technical advances might well lead to the production of almost skin like new tissue-engineered human skin products resembling natural human skin.  相似文献   
105.
Biocatalysts that mediate the H2-dependent reduction of NAD+ to NADH are attractive from both a fundamental and applied perspective. Here we present the first biochemical and spectroscopic characterization of an NAD+-reducing [NiFe]?hydrogenase that sustains catalytic activity at high temperatures and in the presence of O2, which usually acts as an inhibitor. We isolated and sequenced the four structural genes, hoxFUYH, encoding the soluble NAD+-reducing [NiFe]?hydrogenase (SH) from the thermophilic betaproteobacterium, Hydrogenophilus thermoluteolus TH-1T (Ht). The HtSH was recombinantly overproduced in a hydrogenase-free mutant of the well-studied, H2-oxidizing betaproteobacterium Ralstonia eutropha H16 (Re). The enzyme was purified and characterized with various biochemical and spectroscopic techniques. Highest H2-mediated NAD+ reduction activity was observed at 80 °C and pH 6.5, and catalytic activity was found to be sustained at low O2 concentrations. Infrared spectroscopic analyses revealed a spectral pattern for as-isolated HtSH that is remarkably different from those of the closely related ReSH and other [NiFe]?hydrogenases. This indicates an unusual configuration of the oxidized catalytic center in HtSH. Complementary electron paramagnetic resonance spectroscopic analyses revealed spectral signatures similar to related NAD+-reducing [NiFe]?hydrogenases. This study lays the groundwork for structural and functional analyses of the HtSH as well as application of this enzyme for H2-driven cofactor recycling under oxic conditions at elevated temperatures.  相似文献   
106.

Background

The creation of functional skeletal muscle via tissue engineering holds great promise without sacrificing healthy donor tissue. Different cell types have been investigated regarding their myogenic differentiation potential under the influence of various media supplemented with growth factors. Yet, most cell cultures include the use of animal sera, which raises safety concerns and might lead to variances in results. Electrospun nanoscaffolds represent suitable matrices for tissue engineering of skeletal muscle, combining both biocompatibility and stability.We therefore aimed to develop a serum-free myogenic differentiation medium for the co-culture of primary myoblasts (Mb) and mesenchymal stromal cells derived from the bone marrow (BMSC) and adipose tissue (ADSC) on electrospun poly-ε-caprolacton (PCL)-collagen I-nanofibers.

Results

Rat Mb were co-cultured with rat BMSC (BMSC/Mb) or ADSC (ADSC/Mb) two-dimensionally (2D) as monolayers or three-dimensionally (3D) on aligned PCL-collagen I-nanofibers. Differentiation media contained either AIM V, AIM V and Ultroser® G, DMEM/Ham’s F12 and Ultroser® G, or donor horse serum (DHS) as a conventional differentiation medium. In 2D co-culture groups, highest upregulation of myogenic markers could be induced by serum-free medium containing DMEM/Ham’s F12 and Ultroser® G (group 3) after 7 days. Alpha actinin skeletal muscle 2 (ACTN2) was upregulated 3.3-fold for ADSC/Mb and 1.7-fold for BMSC/Mb after myogenic induction by group 3 serum-free medium when compared to stimulation with DHS. Myogenin (MYOG) was upregulated 5.2-fold in ADSC/Mb and 2.1-fold in BMSC/Mb. On PCL-collagen I-nanoscaffolds, ADSC showed a higher cell viability compared to BMSC in co-culture with Mb. Myosin heavy chain 2, ACTN2, and MYOG as late myogenic markers, showed higher gene expression after long term stimulation with DHS compared to serum-free stimulation, especially in BMSC/Mb co-cultures. Immunocytochemical staining with myosin heavy chain verified the presence of a contractile apparatus under both serum free and standard differentiation conditions.

Conclusions

In this study, we were able to myogenically differentiate mesenchymal stromal cells with myoblasts on PCL-collagen I-nanoscaffolds in a serum-free medium. Our results show that this setting can be used for skeletal muscle tissue engineering, applicable to future clinical applications since no xenogenous substances were used.
  相似文献   
107.
Abstract

Farquharson and Adams (Br. J. Nutr. 36, 127-135 (1976)) have identified sulfitocobalamin (S03?Cbl) as one of the naturally occurring cobalamins (Cbls) in foods. We have devised a method of making radioactive labelled S03?Cbl for invivo and in vitro studies of this form of Cbl. 57Co labelled cyanocobalamin (57Co CN-Cbl) was acid photolyzed to 57Co hydroxocobalamin (57Co OH-Cbl) followed by ligand substitution with S03 ?2 ion from aqueous sodium (meta) bisulfite in the dark. The resulting 57Co SO3?Cbl was purified by organic extraction and cation ex-change chromatography. The final preparation was >99% Co57 S03?Cbl with an overall yield of >70%, stable for up to four weeks at 20°C in the dark, and capable of binding to the human Cbl binding proteins Transcobalamin II (TC II), Intrinsic factor (IF) and Salivary R. This method allows a simple 1 day preparation of high specific activity labelled 57Co S03?Cbl for biological studies.  相似文献   
108.
Tissue undergoing free transfer in transplant or reconstructive surgery always is at high risk of ischaemia‐related cell damage. This study aims at assessing different procedures using an extracorporeal perfusion and oxygenation system to investigate the expression of hypoxia inducible factor (HIF)‐1‐α as marker for hypoxia and of the pro‐apoptotic protein Caspase‐3 in skeletal muscle to elucidate potential improvements in tissue conservation. Twenty‐four porcine rectus abdominis muscles were assigned to five different groups and examined after they had been extracorporeally preserved for 60 min. time. Group I was left untreated (control), group II was perfused with a cardioplegic solution, group III was flushed with 10 ml of a cardioplegic solution and then left untreated. Group IV and V were perfused and oxygenated with either an isotone crystalloid solution or a cardioplegic solution. Among others, immunohistochemistry (Caspase‐3 and HIF‐1‐α) of muscle samples was performed. Furthermore, oxygen partial pressure in the perfusate at the arterial and venous branch was measured. Expression of Caspase‐3 after 60 min. was reduced in all groups compared to the control group. Furthermore, all groups (except group III) expressed less HIF‐1‐α than the control group. Oxygenation leads to higher oxygen levels at the venous branch compared to groups without oxygenation. Using an extracorporeal perfusion and oxygenation system cell damage could be reduced as indicated by stabilized expressions of Caspase‐3 and HIF‐1‐α for 60 min. of tissue preservation. Complete depletion of oxygen at the venous branch can be prevented by oxygenation of the perfusate with ambient air.  相似文献   
109.
This study aimed to compare the effects of different velocities of eccentric muscle actions on acute blood lactate and serum growth hormone (GH) concentrations following free weight bench press exercises performed by resistance-trained men. Sixteen healthy men were divided into two groups: slow eccentric velocity (SEV; n = 8) and fast eccentric velocity (FEV; n = 8). Both groups performed four sets of eight eccentric repetitions at an intensity of 70% of their one repetition maximum eccentric (1RMecc) test, with 2-minute rest intervals between sets. The eccentric velocity was controlled to 3 seconds per range of motion for SEV and 0.5 seconds for the FEV group. There was a significant difference (P < 0.001) in the kinetics of blood lactate removal (at 3, 6, 9, 15, and 20 min) and higher mean values for peak blood lactate (P = 0.001) for the SEV group (9.1 ± 0.5 mM) compared to the FEV group (6.1 ± 0.4 mM). Additionally, serum GH concentrations were significantly higher (P < 0.001) at 15 minutes after bench press exercise in the SEV group (1.7 ± 0.6 ng · mL−1) relative to the FEV group (0.1 ± 0.0 ng · mL−1). In conclusion, the velocity of eccentric muscle action influences acute responses following bench press exercises performed by resistance-trained men using a slow velocity resulting in a greater metabolic stress and hormone response.  相似文献   
110.
Bioactive glass (BG) scaffolds are being investigated for bone tissue engineering applications because of their osteoconductive and angiogenic nature. However, to increase the in vivo performance of the scaffold, including enhancing the angiogenetic growth into the scaffolds, some researchers use different modifications of the scaffold including addition of inorganic ionic components to the basic BG composition. In this study, we investigated the in vitro biocompatibility and bioactivity of Cu2+-doped BG derived scaffolds in either BMSC (bone-marrow derived mesenchymal stem cells)-only culture or co-culture of BMSC and human dermal microvascular endothelial cells (HDMEC). In BMSC-only culture, cells were seeded either directly on the scaffolds (3D or direct culture) or were exposed to ionic dissolution products of the BG scaffolds, kept in permeable cell culture inserts (2D or indirect culture). Though we did not observe any direct osteoinduction of BMSCs by alkaline phosphatase (ALP) assay or by PCR, there was increased vascular endothelial growth factor (VEGF) expression, observed by PCR and ELISA assays. Additionally, the scaffolds showed no toxicity to BMSCs and there were healthy live cells found throughout the scaffold. To analyze further the reasons behind the increased VEGF expression and to exploit the benefits of the finding, we used the indirect method with HDMECs in culture plastic and Cu2+-doped BG scaffolds with or without BMSCs in cell culture inserts. There was clear observation of increased endothelial markers by both FACS analysis and acetylated LDL (acLDL) uptake assay. Only in presence of Cu2+-doped BG scaffolds with BMSCs, a high VEGF secretion was demonstrated by ELISA; and typical tubular structures were observed in culture plastics. We conclude that Cu2+-doped BG scaffolds release Cu2+, which in turn act on BMSCs to secrete VEGF. This result is of significance for the application of BG scaffolds in bone tissue engineering approaches.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号