首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   214篇
  免费   6篇
  2021年   4篇
  2016年   2篇
  2015年   4篇
  2014年   5篇
  2013年   4篇
  2012年   7篇
  2011年   10篇
  2010年   6篇
  2009年   5篇
  2008年   5篇
  2007年   7篇
  2006年   7篇
  2005年   4篇
  2004年   4篇
  2003年   7篇
  2002年   9篇
  1997年   2篇
  1995年   3篇
  1989年   2篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   4篇
  1980年   6篇
  1979年   4篇
  1978年   6篇
  1977年   3篇
  1976年   5篇
  1975年   3篇
  1974年   2篇
  1973年   3篇
  1963年   3篇
  1961年   3篇
  1960年   3篇
  1958年   2篇
  1955年   3篇
  1951年   3篇
  1949年   2篇
  1947年   3篇
  1939年   2篇
  1938年   2篇
  1923年   7篇
  1919年   2篇
  1910年   2篇
  1901年   1篇
  1897年   1篇
  1882年   2篇
  1875年   1篇
排序方式: 共有220条查询结果,搜索用时 46 毫秒
91.
Enzymatic Reconstitution of Brain Membrane and Membrane Opiate Receptors   总被引:1,自引:1,他引:0  
A new method using lysophosphatide and acyl-CoA as detergents has been used to solubilize the rat brain opiate receptor. After solubilization, lysophosphatide and acyl-CoA can be almost completely removed by an enzymatic reaction that uses an acyltransferase from rat liver microsomes and reconstitutes the solubilized receptor in membranous vesicles. Morphological studies performed with negative staining and freeze-fracture electron microscopy revealed that the general appearance and intramembrane particle distribution of fracture faces in the reconstituted membrane are similar to those of the native membrane; this indicates that hydrophobic protein components of the original membrane were incorporated during reconstitution. Reconstituted membrane, however, contained higher levels of phosphatidylcholine and lower levels of cholesterol. The activities of the membrane-bound enzymes Na+, K+-ATPase and Ca2+, Mg2+-ATPase in the reconstituted system were 24 and 3%, respectively, those of the native membrane. Although binding of opiate ligands to the reconstituted membrane was stereospecific and saturable, higher concentrations of some of the unlabeled ligands were required to inhibit binding of the radiolabeled ligands. These changes in receptor characteristics are likely due to changes in lipid composition, physical state, and/or distribution of the lipids in the reconstituted membrane bilayer. This conclusion is supported by an increase in the affinity of opiate ligands for reconstituted membrane after adjustment of the latter's lipid composition to match more closely that of the original membrane. This was accomplished by treatment with phospholipid exchange protein to remove the excess phosphatidylcholine and by incorporation of cholesterol into the reconstituted membrane.  相似文献   
92.
The regulation of adult neurogenesis by opiates has been implicated in modulating different addiction cycles. At which neurogenesis stage opiates exert their action remains unresolved. We attempt to define the temporal window of morphine’s inhibition effect on adult neurogenesis by using the POMC-EGFP mouse model, in which newborn granular cells (GCs) can be visualized between days 3–28 post-mitotic. The POMC-EGFP mice were trained under the 3-chambers conditioned place preference (CPP) paradigm with either saline or morphine. We observed after 4 days of CPP training with saline, the number of EGFP-labeled newborn GCs in sub-granular zone (SGZ) hippocampus significantly increased compared to mice injected with saline in their homecage. CPP training with morphine significantly decreased the number of EGFP-labeled GCs, whereas no significant difference in the number of EGFP-labeled GCs was observed with the homecage mice injected with the same dose of morphine. Using cell-type selective markers, we observed that morphine reduced the number of late stage progenitors and immature neurons such as Doublecortin (DCX) and βIII Tubulin (TuJ1) positive cells in the SGZ but did not reduce the number of early progenitors such as Nestin, SOX2, or neurogenic differentiation-1 (NeuroD1) positive cells. Analysis of co-localization between different cell markers shows that morphine reduced the number of adult-born GCs by interfering with differentiation of early progenitors, but not by inducing apoptosis. In addition, when NeuroD1 was over-expressed in DG by stereotaxic injection of lentivirus, it rescued the loss of immature neurons and prolonged the extinction of morphine-trained CPP. These results suggest that under the condition of CPP training paradigm, morphine affects the transition of neural progenitor/stem cells to immature neurons via a mechanism involving NeuroD1.  相似文献   
93.
94.
95.
96.
97.
98.
The affinities of 5-hydroxy-[3H]tryptamine (5-HT) for cerebroside sulfate, 1-phosphatidylinositol, 1-phosphatidylinositol 4-phosphate, 1-phosphatidylinositol 4,5-bisphosphate, phosphatidic acid, and phosphatidyl serine were determined in an aqueous medium. They were observed to be, in general, much lower than and poorly correlated with the values previously reported by Johnson et al (1977a), measured in isobutanol. This suggested that these lipids probably are not 5-HT receptors and that drug affinities measured in organic media must be evaluated with caution.  相似文献   
99.
100.
Recent studies have revealed that in G protein-coupled receptor signalings switching between G protein- and β-arrestin (βArr)-dependent pathways occurs. In the case of opioid receptors, the signal is switched from the initial inhibition of adenylyl cyclase (AC) to an increase in AC activity (AC activation) during prolonged agonist treatment. The mechanism of such AC activation has been suggested to involve the switching of G proteins activated by the receptor, phosphorylation of signaling molecules, or receptor-dependent recruitment of cellular proteins. Using protein kinase inhibitors, dominant negative mutant studies and mouse embryonic fibroblast cells isolated from Src kinase knock-out mice, we demonstrated that μ-opioid receptor (OPRM1)-mediated AC activation requires direct association and activation of Src kinase by lipid raft-located OPRM1. Such Src activation was independent of βArr as indicated by the ability of OPRM1 to activate Src and AC after prolonged agonist treatment in mouse embryonic fibroblast cells lacking both βArr-1 and -2. Instead the switching of OPRM1 signals was dependent on the heterotrimeric G protein, specifically Gi2 α-subunit. Among the Src kinase substrates, OPRM1 was phosphorylated at Tyr336 within NPXXY motif by Src during AC activation. Mutation of this Tyr residue, together with mutation of Tyr166 within the DRY motif to Phe, resulted in the complete blunting of AC activation. Thus, the recruitment and activation of Src kinase by OPRM1 during chronic agonist treatment, which eventually results in the receptor tyrosine phosphorylation, is the key for switching the opioid receptor signals from its initial AC inhibition to subsequent AC activation.Classical G protein-coupled receptor (GPCR)2 signaling involves the activation of specific heterotrimeric G proteins and the subsequent dissociation of α- and βγ-subunits. These G protein subunits serve as the activators and/or inhibitors of several effector systems, including adenylyl cyclases, phospholipases, and ion channels (1). However, recent studies have shown that GPCR signaling deviates from such a classical linear model. For example, in kidney and colonic epithelial cells, protease-activated receptor 1 can transduce its signals through either Gαi/o or Gαq subunits via inhibition of small GTPase RhoA or activation of RhoD. Thus, RhoA and RhoD act as molecular switches between the negative and positive signaling activity of protease-activated receptor 1 (2). Another example is the ability of β2-adrenergic receptor to switch from Gs-dependent pathways to non-classical signaling pathways by coupling to pertussis toxin-sensitive Gi proteins in a cAMP-dependent protein kinase/protein kinase C phosphorylation-dependent manner. In this case, the phosphorylation-induced switch in G protein coupling provides the receptor access to alternative signaling pathways. For β2-adrenergic receptors, this leads to a Gi-dependent activation of MAP kinase (3, 4). Furthermore the involvement of protein scaffolds, such as β-arrestins in the MAP kinase cascade, could also alter the GPCR signaling (58). Hence the formation of “signaling units” or “receptosomes” would influence the GPCR signaling process and destination.For opioid receptors, which are members of the rhodopsin GPCR subfamily receptors, signal switching is also observed. Normally opioid receptors inhibit AC activity, activate the MAP kinases and Kir3 K+ channels, inhibit the voltage-dependent Ca2+ channels, and regulate other effectors such as phospholipase C (9). However, during prolonged agonist treatment, not only is there a blunting of these cellular responses but also a compensatory increase in intracellular cAMP level, which is particularly significant upon the removal of the agonist or the addition of an antagonist such as naloxone (1012). This compensatory adenylyl cyclase activation phenomenon has been postulated to be responsible for the development of drug tolerance and dependence (13). The observed change from receptor-mediated AC inhibition to receptor-mediated AC activation reflects possible receptor signal switching. Although the exact mechanism for such signal changes has yet to be elucidated, activation of specific protein kinases and subsequent phosphorylation of AC isoforms (14, 15) and other signaling molecules (16) have been suggested to be the key for observed AC activation. Among all the protein kinases studied, involvement of protein kinase C, MAP kinase, and Raf-1 has been implicated in the activation of AC (1719). Alternative mechanisms, such as agonist-induced receptor internalization and the increase in the constitutive activities of the receptor, also have been suggested to play a role in increased AC activity after prolonged opioid agonist treatment (20). Earlier studies also implicated the switching of the opioid receptor from Gi/Go to Gs coupling during chronic agonist treatment (21). Regardless of the mechanism, the exact molecular events that lead to the switching of opioid receptor from an inhibitory response to a stimulatory response remain elusive.Src kinases, which are members of the nonreceptor tyrosine kinase family, have been implicated in GPCR function because several Src family members such as cSrc, Fyn, and Yes have been reported to be activated by several GPCRs, including β2- (22) and β3 (23)-adrenergic, M2- (24) and M3 (25)-muscarinic, and bradykinin receptors (26). The GPCRs that are capable of activating Src predominantly couple to Gi/o family G proteins (27). Src kinases appear to associate with, and be activated by, GPCRs themselves either through direct interaction with intracellular receptor domains or by binding to GPCR-associated proteins, such as G protein subunits or β-arrestins (27). Src kinase has been reported to be activated by κ- (28) and δ (29)-opioid receptors and regulate the c-Jun kinase and MAP kinase activities. Src kinase within the nucleus accumbens has been implicated in the rewarding effect and hyperlocomotion induced by morphine in mice (30). However, it is not clear whether the Src kinase is activated and involved in the signal transduction in AC activation after chronic opioid agonist administration.Previously we reported that the lipid raft location of the receptor and the Gαi2 proteins are two prerequisites for the observed increase in AC activity during prolonged agonist treatment (31, 32). Because various protein kinases including Src kinases and G proteins have been shown to be enriched in lipid rafts (33), the roles of these cellular proteins in the eventual switching of opioid receptor signals from inhibition to stimulation of AC activity were examined in the current studies. We were able to demonstrate that the association with and subsequent activation of Src kinase by the μ-opioid receptor (OPRM1), which leads to eventual tyrosine phosphorylation of OPRM1, are the cellular events required for the switching of opioid receptor signaling upon chronic agonist treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号