首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1208篇
  免费   152篇
  2022年   9篇
  2021年   16篇
  2020年   10篇
  2018年   11篇
  2017年   10篇
  2016年   23篇
  2015年   37篇
  2014年   32篇
  2013年   61篇
  2012年   46篇
  2011年   77篇
  2010年   82篇
  2009年   56篇
  2008年   38篇
  2007年   43篇
  2006年   46篇
  2005年   47篇
  2004年   32篇
  2003年   42篇
  2002年   42篇
  2001年   31篇
  2000年   36篇
  1999年   40篇
  1998年   22篇
  1997年   10篇
  1996年   15篇
  1995年   16篇
  1994年   10篇
  1993年   13篇
  1992年   24篇
  1991年   28篇
  1990年   15篇
  1989年   9篇
  1988年   25篇
  1987年   18篇
  1986年   19篇
  1985年   20篇
  1984年   15篇
  1983年   9篇
  1982年   12篇
  1981年   17篇
  1980年   11篇
  1979年   13篇
  1978年   9篇
  1977年   9篇
  1976年   9篇
  1975年   9篇
  1974年   12篇
  1973年   13篇
  1971年   13篇
排序方式: 共有1360条查询结果,搜索用时 15 毫秒
71.
Direct observation of rapid membrane potential changes is critical to understand how complex neurological systems function. This knowledge is especially important when stimulation is achieved through an external stimulus meant to mimic a naturally occurring process. To enable exploration of this dynamic space, we developed an all-optical method for observing rapid changes in membrane potential at temporal resolutions of ~25 ns. By applying a single 600-ns electric pulse, we observed sub-microsecond, continuous membrane charging and discharging dynamics. Close agreement between the acquired results and an analytical membrane-charging model validates the utility of this technique. This tool will deepen our understanding of the role of membrane potential dynamics in the regulation of many biological and chemical processes within living systems.  相似文献   
72.
Local delivery of viral vectors can enhance the efficacy of therapies by selectively affecting necessary tissues and reducing the required vector dose. Pluronic F127 is a thermosensitive polymer that undergoes a solution–gelation (sol–gel) transition as temperature increases and can deliver vectors without damaging them. While pluronics can be spread over large areas, such as the surface of an organ, before gelation, they lack sufficient adhesivity to remain attached to some tissues, such as the surface of the heart or mucosal surfaces. Here, we utilized blends of pluronic F127 and polycarbophil (PCB), a mucoadhesive agent, to provide the necessary adhesivity for local delivery of viral vectors to the cardiac muscle. The effects of PCB concentration on adhesive properties, sol–gel temperature transition and cytocompatibility were evaluated. Rheological studies showed that PCB decreased the sol–gel transition temperature at concentrations >1% and increased the adhesive properties of the gel. Furthermore, these gels were able to deliver viral vectors and transduce cells in vitro and in vivo in a neonatal mouse apical resection model. These gels could be a useful platform for delivering viral vectors over the surface of organs where increased adhesivity is required.  相似文献   
73.
The cyclic derivative of 13(S)-hydroperoxolinolenic acid, 12-oxophytodienoic acid, serves as a signal transducer in higher plants, mediating mechanotransductory processes and plant defenses against a variety of pathogens, and also serves as a precursor for the biosynthesis of jasmonic acid, a mediator of plant herbivore defense. Biosynthesis of 12-oxophytodienoic acid from alpha-linolenic acid occurs in plastids, mainly in chloroplasts, and is thought to start with free linolenic acid liberated from membrane lipids by lipase action. In Arabidopsis thaliana, the glycerolipid fraction contains esterified 12-oxophytodienoic acid, which can be released enzymatically by sn1-specific, but not by sn2-specific, lipases. The 12-oxophytodienoyl glycerolipid fraction was isolated, purified, and characterized. Enzymatic, mass spectrometric, and NMR spectroscopic data allowed us to establish the structure of the novel oxylipin as sn1-O-(12-oxophytodienoyl)-sn2-O-(hexadecatrienoyl)-monogalactosyl diglyceride. The novel class of lipids is localized in plastids. Purified monogalactosyl diglyceride was not converted to the sn1-(12-oxophytodienoyl) derivative by the combined action of (soybean) lipoxygenase and (A. thaliana) allene oxide synthase, an enzyme ensemble that converts free alpha-linolenic acid to free 12-oxophytodienoic acid. When leaves were wounded, a significant and transient increase in the level of (12-oxophytodienoyl)-monogalactosyl diglyceride was observed. In A. thaliana, the major fraction of 12-oxophytodienoic acid occurs esterified at the sn1 position of the plastid-specific glycerolipid, monogalactosyl diglyceride.  相似文献   
74.
Pre-illumination of cucumber leaf discs at a chilling temperature in low-irradiance white light resulted in accelerated re-reduction of P700(+) [the special Chl pair in the photosystem I (PSI) reaction centre] when the far-red measuring light was turned off. Measurements (in +/- methyl viologen or +/- DCMU conditions) of the re-reduction half time suggest that accelerated re-reduction of P700(+) appeared to be predominantly due to charge recombination and only partly due to reductants sustained by previous cyclic electron flow around PSI. Apparently, charge recombination in PSI was greatly enhanced by inhibition of forward, linear electron flow. Inhibition of PSII electron transport was observed to occur to a lesser extent than that of PSI, but only if the measurement of PSII functionality was free from complications due to downstream accumulation of electrons in pools. We suggest that promotion of controlled charge recombination and cyclic electron flow round PSI during chilling of leaves in the light may partly prevent further damage to both photosystems.  相似文献   
75.
76.
Lysosomal breakdown of glycosphingolipids with short hydrophilic carbohydrate headgroups is achieved by the simultaneous action of specific hydrolases and sphingolipid activator proteins (SAPs). Activator proteins are considered to facilitate the enzyme/substrate interaction between water-soluble enzymes and membrane-bound substrates. Sphingomyelin, containing the small hydrophilic phosphorylcholine moiety, is hydrolysed by acid sphingomyelinase (acid SMase). Recent experimental data on the in vivo and in vitro role of activator proteins in sphingomyelin breakdown by acid SMase are reviewed. These data combined with the results using homogenous protein preparations as well as a liposomal assay system mimicking the physiological conditions suggest that lysosomal sphingomyelin degradation is not critically dependent on any of the known activator proteins. Moreover, evidence is provided that the assumed intramolecular activator domain of acid SMase and especially the presence of negatively charged lipids in the lysosomes are sufficient for sphingomyelin turnover.  相似文献   
77.
Stimson E  Hope J  Chong A  Burlingame AL 《Biochemistry》1999,38(15):4885-4895
The murine prion protein PrP gene encodes a protein of 254 amino acids with two consensus sites for Asn-linked glycosylation at codons 180 and 196. A partial site-specific study of the N-linked glycans from hamster PrP has previously been carried out by mass spectrometry [Stahl, N., Baldwin, M. A., Teplow, D. B., Hood, L., Gibson, B. W., Burlingame, A. L., and Prusiner, S. B. (1993) Biochemistry 32, 1991-2002] and revealed that the glycosylation at Asn-181 (equivalent to mouse 180) is heterogeneous, comprising over 30 glycoforms. The identification of the glycosylated peptide spanning Asn-197 was not reported. Recent technical advances in electrospray mass spectrometry now provide the sensitivity to detect low femtomole quantities of glycopeptides with >5000 mass resolution and 30 ppm mass measurement [Medzihradszky, K. F., Besman, M. J., and Burlingame, A. L. (1998) Rapid Commun. Mass Spectrom. 12, 472-478]. This performance coupled with stepwise exoglycosidase digestion has been employed to establish the differential nature of the structural complexity (glycoforms) of the glycans at Asn-180 and Asn-196 from a single strain infected with the ME7 strain. Some sixty structures have been found characterized by neutral and sialylated bi-, tri-, and tetraantennary complex-type bearing outer-arm alpha(1-3)-fucosylation (the Lewisx and sialyl-Lewisx epitopes), core alpha(1,6) fucosylation, and the presence of terminal HexNAc residues. The Lewisx trisaccharide is the major nonreducing structure at Asn-180, and significant amounts of both Lewisx and sialyl Lewisx epitopes are observed at Asn-196. The abundance of the Lewisx and sialyl Lewisx epitopes on murine PrPSc may indicate a role for these structures in the normal function of PrPC or the pathophysiology of PrPSc.  相似文献   
78.
79.
Cummings  E.  Hundal  H.S.  Wackerhage  H.  Hope  M.  Belle  M.  Adeghate  E.  Singh  J. 《Molecular and cellular biochemistry》2004,261(1):99-104
The fruit of Momordica charantia (family: Cucurbitacea) is used widely as a hypoglycaemic agent to treat diabetes mellitus (DM). The mechanism of the hypoglycaemic action of M. charantia in vitro is not fully understood. This study investigated the effect of M. charantia juice on either 3H-2-deoxyglucose or N-methyl-amino-a-isobutyric acid (14C-Me-AIB) uptake in L6 rat muscle cells cultured to the myotube stage. The fresh juice was centrifuged at 5000 rpm and the supernatant lyophilised. L6 myotubes were incubated with either insulin (100 nM), different concentrations (1–10 g ml–1) of the juice or its chloroform extract or wortmannin (100 nM) over a period of 1–6 h. The results were expressed as pmol min–1 (mg cell protein)–1, n= 6–8 for each value. Basal 3H-deoxyglucose and 14C-Me-AIB uptakes by L6 myotubes after 1 h of incubation were (means ± S.E.M.) 32.14 ± 1.34 and 13.48 ± 1.86 pmol min–1 (mg cell protein)–1, respectively. Incubation of L6 myotubes with 100 nM insulin for 1 h resulted in significant (ANOVA, p < 0.05) increases in 3H-deoxyglucose and 14C-Me-AIB uptakes. Typically, 3H-deoxyglucose and 14C-Me-AIB uptakes in the presence of insulin were 58.57 ± 4.49 and 29.52 ± 3.41 pmol min–1 (mg cell protein–1), respectively. Incubation of L6 myotubes with three different concentrations (1, 5 and 10 g ml–1) of either the lyophilised juice or its chloroform extract resulted in time-dependent increases in 3H-deoxy-D-glucose and 14C-Me-AIB uptakes, with maximal uptakes occurring at a concentration of 5 g ml–1. Incubation of either insulin or the juice in the presence of wortmannin (a phosphatidylinositol 3-kinase inhibitor) resulted in a marked inhibition of 3H-deoxyglucose by L6 myotubes compared to the uptake obtained with either insulin or the juice alone. The results indicate that M. charantia fruit juice acts like insulin to exert its hypoglycaemic effect and moreover, it can stimulate amino acid uptake into skeletal muscle cells just like insulin. (Mol Cell Biochem 261: 99–104, 2004)  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号