首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   6篇
  110篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   10篇
  2018年   4篇
  2017年   5篇
  2016年   3篇
  2015年   8篇
  2014年   8篇
  2013年   11篇
  2012年   5篇
  2011年   11篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   7篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  1999年   1篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1987年   1篇
  1983年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有110条查询结果,搜索用时 15 毫秒
41.
Abstract

Retama raetam essential oils (EOs) composition and biological activities were assessed during three developmental periods. The essential oil yield varied significantly among the developmental stages and the optimal was detected at the fresh fruiting stage (0.34%). In addition, EOs composition varied significantly (p < 0.05) according to the different developmental stages. In fact, 2-Methoxy-4-vinylphenol, linalool, and 1-octen-3-ol were the main compounds in the vegetative, flowering, and the fresh fruiting stages, respectively. Developmental stage had also a strong effect on EOs antioxidant and antimicrobial activities. In fact, during the fresh fruiting stage, IC50 and EC50 values of the antioxidant assays were 2 to 3 times inferior to all others stages. Concerning the determination of the diameter of inhibition, a slight to high antimicrobial activity was revealed against 12 bacteria and 4 yeasts. Once again, EOs from the fresh fruiting stage had higher bactericidal effect than those from the flowering and vegetative ones (IZ varied from 10 to 13 mm). The results of this investigation showed for the first time the high accumulation of EOs at the early stages of fruit development making the fresh fruiting optimal stage for the extraction of powerful antioxidant and antimicrobial EOs.  相似文献   
42.
The effects of soil warming and nitrogen availability on root production, longevity and mortality were studied using minirhizotrons in irrigation (C), fertilized (F), heated (H), and heated‐fertilized (HF) plots in a Norway spruce stand in northern Sweden from October 1996 to October 1997. Irrigation was included in all treatment plots. Heating cables were used to maintain the soil temperature in heated plots at 5°C above that in unheated plots during the growing season. A Kaplan–Meier approach was used to estimate the longevity of fine roots and Cox proportional hazards regression to analyze the effects of the H, F, and HF treatments on the risk of root mortality. The proportion of annual root length production contributed by winter–spring production amounted to 52% and 49% in heated plots and heated‐fertilized plots, respectively. The annual root length production in C plots was significantly higher than in other treatments, while the HF treatment gave significantly greater production compared with the F treatment. The risk of mortality (hazard ratio) relative to C plots was higher in H plots (358%) and F plots (191%). The interaction between heating and fertilizing was strongly significant. The increase in the risk of root mortality in combined fertilization and heating (103%) was lower than that in the H or F plots. The results show that nitrogen addition combined with warmer temperatures decreases the risk of root mortality, and fine root production is a function of the length of the growing season. In the future, fertilization combined with the warmer temperatures expected to follow predicted climatic change may increase root production in boreal forests at low fertility sites.  相似文献   
43.
44.
Morphological modifications, i.e., cell shape, cell surface sugar residues, cytoskeleton, and apoptosis of Hep G2 cells during 24 h exposure to 6 mT static magnetic field (static MF) were studied by means of light and electron microscopy and cytochemistry. Progressive modifications of cell shape and surface were observed during the entire period of exposure to static MF. Control cells were polyhedric with short microvilli covering the cell surface, while those exposed to static MF, were elongated with many irregular microvilli randomly distributed on the cell surface. At the end of the exposure period, the cells had a less flat shape due to partial detachment from the culture dishes. However, throughout the period of exposure under investigation, the morphology of the organelles remained unmodified and cell proliferation was only partially affected. In parallel with cell shape changes, the microfilaments and microtubules, as well as the quantity and distribution of surface ConA-FITC and Ricinus communnis-FITC labeling sites, were modified in a time dependent manner. Apoptosis, which was almost negligible at the beginning of experiment, increased to about 20% after 24 h of continuous exposure. The induction of apoptosis was likely due to the increment of [Ca2+]i during exposure. In conclusion, the data reported in the present work indicates that 6 mT static MF exposure exerts time dependent biological effects on Hep G2 cells.  相似文献   
45.
The effects of external resistance on the recruitment of trunk muscles in sagittal movements and the coactivation mechanism to maintain spinal stability were investigated using a simple computational model of iso-resistive spine sagittal movements. Neural excitation of muscles was attained based on inverse dynamics approach along with a stability-based optimisation. The trunk flexion and extension movements between 60° flexion and the upright posture against various resistance levels were simulated. Incorporation of the stability constraint in the optimisation algorithm required higher antagonistic activities for all resistance levels mostly close to the upright position. Extension movements showed higher coactivation with higher resistance, whereas flexion movements demonstrated lower coactivation indicating a greater stability demand in backward extension movements against higher resistance at the neighbourhood of the upright posture. Optimal extension profiles based on minimum jerk, work and power had distinct kinematics profiles which led to recruitment patterns with different timing and amplitude of activation.  相似文献   
46.

Aims

Granulocyte colony stimulating factor (G-CSF), a new neuroprotective agent, binds to its specific receptors in the brain. In this study we hypothesized that at least a part of G-CSF's neuroprotective effect may be mediated through its interaction with other proteins in the brain.

Main methods

Using an immunoprecipitation (IP) kit, at first the antibody of G-CSF was covalently crosslinked to protein A/G agarose. Then the mouse brain or PC12 cell lysate mixed with G-CSF was added to the agarose beads plus antibody. After immunoaffinity isolation of target proteins, gel electrophoresis was performed and protein bands were identified using MALDI-TOF/TOF and MASCOT software.

Key findings

Our data show that G-CSF physically binds to cellular proteins like sodium/potassium-transporting ATPase, beta actin, aldehyde dehydrogenase, regucalcin and glutathione-s-transferase. These proteins are involved in membrane transportation, cell structure, signal transduction, enzymes involve in calcium related cell signaling and redox homeostasis.

Significance

Interaction of G-CSF with these proteins can explain some of its pharmacological effects in the CNS.  相似文献   
47.
A basal ganglia central pattern generator (CPG) is developed and its role in voluntary movements on the ground and postural reactions on a disturbed platform are studied and analysed by simulation. Biped dynamics and platform kinematics are utilised. The effects of agonist–antagonist muscular co-activation and joint stiffness are formulated. The implementation of the necessary counter-manoeuvres for maintaining balance and postural stability is studied. A control strategy, applicable to large systems, is formulated. The biped manoeuvres and transitions terminate in pre-specified intervals of time. Gravity is included and compensated for. Certain voluntary and postural adjustment strategies are the same but are initiated differently. Further experimental/computational research may identify the central nervous system and sensory paths that lead to the CPG. All actuator forces linearly evolve in time from their original values to their terminal values. There are no central continuous feedback loops present. Monitoring and sensing, however, are ongoing. The counter-manoeuvres are based on learned human-like voluntary movements that are triggered by the disturbance. The required central inputs to the musculoskeletal system are designed in the CPG. A functional structure for the CPG is proposed. The effect of certain disorders and malfunctions of the CPG are studied by simulation.  相似文献   
48.
We studied effects of nitrogen, other nutrients and water (liquid fertilization; LF) on fine root dynamics (production, mortality) and life span of mycorrhizal short roots in a Norway spruce stand, using minirhizotrons. Data were collected and analyzed during a two-year period at depths of 0–20 cm, 21–40 cm and 41–85 cm, six years after the start of treatment. Relative to control (C), root production was lower in LF plots at depth 0–20 cm. Root production increased significantly at depth 41–85 cm. Fine root mortality in LF plots was higher at all depths. Life span of mycorrhizal short roots in LF plots was significantly lower than C plots and at the end of the study no mycorrhizal short roots were alive. It is suggested that the water and nitrogen input lower longevity of mycorrhizal short roots and promote fine root production at deeper soil layers.  相似文献   
49.
Cluster Computing - Internet of Things (IoT) networks are considered the great challenging by emerging technologies that try to solve the problems in modern life, while securing the information...  相似文献   
50.
Abstract

Fine roots (<2 mm) are very dynamic and play a key role in forest ecosystem carbon and nutrient cycling and accumulation. We reviewed root biomass data of three main European tree species European beech, (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.) and Scots pine (Pinus sylvestris L.), in order to identify the differences between species, and within and between vegetation zones, and to show the relationships between root biomass and the climatic, site and stand factors. The collected literature consisted of data from 36 beech, 71 spruce and 43 pine stands. The mean fine root biomass of beech was 389 g m?2, and that of spruce and pine 297 g m?2 and 277 g m?2, respectively. Data from pine stands supported the hypothesis that root biomass is higher in the temperate than in the boreal zone. The results indicated that the root biomass of deciduous trees is higher than that of conifers. The correlations between root biomass and site fertility characteristics seemed to be species specific. There was no correlation between soil acidity and root biomass. Beech fine root biomass decreased with stand age whereas pine root biomass increased with stand age. Fine root biomass at tree level correlated better than stand level root biomass with stand characteristics. The results showed that there exists a strong relationship between the fine root biomass and the above-ground biomass.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号