全文获取类型
收费全文 | 128篇 |
免费 | 9篇 |
专业分类
137篇 |
出版年
2021年 | 1篇 |
2019年 | 1篇 |
2017年 | 1篇 |
2015年 | 4篇 |
2014年 | 2篇 |
2013年 | 4篇 |
2012年 | 6篇 |
2011年 | 2篇 |
2010年 | 5篇 |
2009年 | 9篇 |
2008年 | 2篇 |
2006年 | 2篇 |
2005年 | 2篇 |
2003年 | 3篇 |
2002年 | 1篇 |
2001年 | 5篇 |
2000年 | 2篇 |
1999年 | 7篇 |
1998年 | 3篇 |
1996年 | 4篇 |
1995年 | 3篇 |
1994年 | 2篇 |
1993年 | 2篇 |
1992年 | 3篇 |
1991年 | 4篇 |
1990年 | 1篇 |
1989年 | 2篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1986年 | 5篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 2篇 |
1981年 | 7篇 |
1980年 | 2篇 |
1979年 | 10篇 |
1978年 | 11篇 |
1977年 | 4篇 |
1975年 | 1篇 |
1974年 | 5篇 |
1973年 | 1篇 |
1969年 | 1篇 |
排序方式: 共有137条查询结果,搜索用时 15 毫秒
71.
72.
73.
74.
75.
Elmar W Tobi Bastiaan T Heijmans Dennis Kremer Hein Putter Henriette A Delemarre-van de Waal Martijn JJ Finken Jan M Wit P Eline Slagboom 《Epigenetics》2011,6(2):171-176
Being born small for gestational age (SGA), a proxy for intrauterine growth restriction (IUGR) and prenatal famine exposure are both associated with a greater risk of metabolic disease. Both associations have been hypothesized to involve epigenetic mechanisms. We investigated whether prenatal growth restriction early in pregnancy was associated with changes in DNA methylation at loci that were previously shown to be sensitive to early gestational famine exposure. We compared 38 individuals born preterm (<32 weeks) and with a birth weight too low for their gestational age (less than −1SDS; SGA) with 75 individuals born preterm but with a birth weight appropriate for their gestational age (greater than −1SDS) and a normal postnatal growth (greater than −1SDS at three months post term; AGA). The SGA individuals were not only lighter at birth, but also had a smaller length (p = 3.3 × 10−13) and head circumference at birth (p = 4.1 × 10−13). The DNA methylation levels of IGF2, GNASAS, INSIGF and LEP were 48.5, 47.5, 79.4 and 25.7% respectively. This was not significantly different between SGA and AGA individuals. Risk factors for being born SGA, including preeclampsia and maternal smoking, were also not associated with DNA methylation at these loci. Growth restriction early in development is not associated with DNA methylation at loci shown to be affected by prenatal famine exposure. Our and previous results by others indicate that prenatal growth restriction and famine exposure may be associated with different epigenetic changes or non-epigenetic mechanisms that may lead to similar later health outcomes.Key words: SGA, DOHAD, IUGR, DNA methylation, famine, IGF2, LEP, INS, GNASAS 相似文献
76.
Stephen?R.F. Twigg Jennifer Forecki Jacqueline?A.C. Goos Ivy?C.A. Richardson A.?Jeannette?M. Hoogeboom Ans?M.W. van?den?Ouweland Sigrid?M.A. Swagemakers Maarten?H. Lequin Daniel Van?Antwerp Simon?J. McGowan Isabelle Westbury Kerry?A. Miller Steven?A. Wall WGS Consortium Peter?J. van?der?Spek Irene?M.J. Mathijssen Erwin Pauws Christa?S. Merzdorf Andrew?O.M. Wilkie 《American journal of human genetics》2015,97(3):378-388
77.
78.
79.
80.
Interactions of Photobleaching and Inorganic Nutrients in Determining Bacterial Growth on Colored Dissolved Organic Carbon 总被引:8,自引:0,他引:8
Abstract Bacteria are key organisms in the processing of dissolved organic carbon (DOC) in aquatic ecosystems. Their growth depends on both organic substrates and inorganic nutrients. The importance of allochthonous DOC, usually highly colored, as bacterial substrate can be modified by photobleaching. In this study, we examined how colored DOC (CDOC) photobleaching, and phosphorus (P) and nitrogen (N) availability, affect bacterial growth. Five experiments were conducted, manipulating nutrients (P and N) and sunlight exposure. In almost every case, nutrient additions had a significant, positive effect on bacterial abundance, production, and growth efficiency. Sunlight exposure (CDOC photobleaching) had a significant, positive effect on bacterial abundance and growth efficiency. We also found a significant, positive interaction between these two factors. Thus, bacterial use of CDOC was accelerated under sunlight exposure and enhanced P and N concentrations. In addition, the accumulation of cells in sunlight treatments was dependent on nutrient availability. More photobleached substrate was converted into bacterial cells in P- and N-enriched treatments. These results suggest nutrient availability may affect the biologically-mediated fate (new biomass vs respiration) of CDOC. 相似文献