首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   822篇
  免费   106篇
  928篇
  2021年   9篇
  2020年   8篇
  2019年   14篇
  2018年   17篇
  2017年   8篇
  2016年   10篇
  2015年   20篇
  2014年   13篇
  2013年   31篇
  2012年   44篇
  2011年   40篇
  2010年   22篇
  2009年   13篇
  2008年   35篇
  2007年   28篇
  2006年   28篇
  2005年   30篇
  2004年   33篇
  2003年   31篇
  2002年   26篇
  2001年   24篇
  2000年   26篇
  1999年   29篇
  1998年   16篇
  1997年   8篇
  1996年   12篇
  1994年   9篇
  1993年   15篇
  1992年   23篇
  1991年   17篇
  1990年   23篇
  1989年   26篇
  1988年   15篇
  1987年   22篇
  1986年   17篇
  1985年   18篇
  1984年   17篇
  1983年   17篇
  1982年   11篇
  1981年   10篇
  1980年   10篇
  1979年   11篇
  1978年   8篇
  1977年   8篇
  1976年   7篇
  1974年   6篇
  1973年   12篇
  1968年   5篇
  1967年   4篇
  1965年   4篇
排序方式: 共有928条查询结果,搜索用时 15 毫秒
91.
92.
With the rapid assimilation of genomic information and the equally impressive developments in the field of proteomics, there is an unprecedented interest in biomarker discovery. Although human biofluids represent increasingly attractive samples from which new and more accurate disease biomarkers may be found, the intrinsic person-to-person variability in these samples complicates their discovery. One of the most extensively used animal models for studying human disease is mouse because, unlike humans, they represent a highly controllable experimental model system. Unfortunately, very little is known about the proteomic composition of mouse serum. In this study, a multidimensional fractionation approach on both the protein and the peptide level that does not require depletion of highly abundant serum proteins was combined with tandem mass spectrometry to characterize proteins within mouse serum. Over 12 300 unique peptides that originate from 4567 unique proteins-approximately 16% of all known mouse proteins-were identified. The results presented here represent the broadest proteome coverage in mouse serum and provide a foundation from which quantitative comparisons can be made in this important animal model.  相似文献   
93.
BACKGROUND: Indole-3-carbinol (I3C) is a product of the hydrolysis of glucobrassicin that is found in cruciferous vegetables. I3C can intervene in toxic processes that are mediated by oxidative mechanisms because it possesses the chemical and pharmacokinetic properties necessary to provide a free radical trap. Cyclophosphamide (CP) is a bifunctional alkylating agent known to produce DNA damage and to cause developmental toxicity, including malformations, in laboratory animals. METHODS: Pregnant CD-1 mice were given a 100 mg/kg dose of I3C 24 or 48 hr before administration of 20 mg/kg CP on gestation day 10 (GD 10). Controls were given the vehicle (DMSO), I3C, or CP. This regimen was carried out to determine if I3C could protect against the developmental toxicity of alkylating agents, such as CP. Dams were sacrificed on GD 17 and their litters were examined for adverse effects. RESULTS: Treatment with I3C 48 hr before CP administration was associated with decreased fetal limb and tail malformations. Limb malformation incidences were reduced from 42% litters affected in the CP control to 16% in the I3C/CP 48-hr treatment group, and tail malformations were reduced from 45% in the CP control to 16% in the I3C/CP 48-hr treatment group, indicating a protective effect of prior exposure to I3C. I3C given 24 hr before CP had no significant protective effect, while having an apparently adverse consequence with regard to the incidence of talipes. CONCLUSIONS: Exposure of a developing mammal to indole-3-carbinol before exposure to cyclophosphamide during organogenesis can influence the teratogenicity of cyclophosphamide.  相似文献   
94.
95.
High-throughput methods for generating aptamer microarrays are described. As a proof-of-principle, the microarrays were used to screen the affinity and specificity of a pool of robotically selected antilysozyme RNA aptamers. Aptamers were transcribed in vitro in reactions supplemented with biotinyl-guanosine 5'-monophosphate, which led to the specific addition of a 5' biotin moiety, and then spotted on streptavidin-coated microarray slides. The aptamers captured target protein in a dose-dependent manner, with linear signal response ranges that covered seven orders of magnitude and a lower limit of detection of 1 pg/mL (70 fM). Aptamers on the microarray retained their specificity for target protein in the presence of a 10,000-fold (w/w) excess of T-4 cell lysate protein. The RNA aptamer microarrays performed comparably to current antibody microarrays and within the clinically relevant ranges of many disease biomarkers. These methods should also prove useful for generating other functional RNA microarrays, including arrays for genomic noncoding RNAs that bind proteins. Integrating RNA aptamer microarray production with the maturing technology for automated in vitro selection of antiprotein aptamers should result in the high-throughput production of proteome chips.  相似文献   
96.
Hood ME  Antonovics J  Koskella B 《Genetics》2004,168(1):141-146
It is usually posited that the most important factors contributing to sex chromosome evolution in diploids are the suppression of meiotic recombination and the asymmetry that results from one chromosome (the Y) being permanently heterozygous and the other (the X) being homozygous in half of the individuals involved in mating. To distinguish between the roles of these two factors, it would be valuable to compare sex chromosomes in diploid-mating organisms and organisms where mating compatibility is determined in the haploid stage. In this latter group, no such asymmetry occurs because the sex chromosomes are equally heterozygous. Here we show in the fungus Microbotryum violaceum that the chromosomes carrying the mating-type locus, and thus determining haploid-mating compatibility, are rich in transposable elements, dimorphic in size, and carry unequal densities of functional genes. Through analysis of available complete genomes, we also show that M. violaceum is, remarkably, more similar to humans and mice than to yeast, nematodes, or fruit flies with regard to the differential accumulation of transposable elements in the chromosomes determining mating compatibility vs. the autosomes. We conclude that restricted recombination, rather than asymmetrical sheltering, hemizygosity, or dosage compensation, is sufficient to account for the common sex chromosome characteristics.  相似文献   
97.
Transferable antibiotic resistance in Haemophilus influenzae was first detected in the early 1970s. After this, resistance spread rapidly worldwide and was shown to be transferred by a large 40- to 60-kb conjugative element. Bioinformatics analysis of the complete sequence of a typical H. influenzae conjugative resistance element, ICEHin1056, revealed the shared evolutionary origin of this element. ICEHin1056 has homology to 20 contiguous sequences in the National Center for Biotechnology Information database. Systematic comparison of these homologous sequences resulted in identification of a conserved syntenic genomic island consisting of up to 33 core genes in 16 beta- and gamma-Proteobacteria. These diverse genomic islands shared a common evolutionary origin, insert into tRNA genes, and have diverged widely, with G+C contents ranging from 40 to 70% and amino acid homologies as low as 20 to 25% for shared core genes. These core genes are likely to account for the conjugative transfer of the genomic islands and may even encode autonomous replication. Accessory gene clusters were nestled among the core genes and encode the following diverse major attributes: antibiotic, metal, and antiseptic resistance; degradation of chemicals; type IV secretion systems; two-component signaling systems; Vi antigen capsule synthesis; toxin production; and a wide range of metabolic functions. These related genomic islands include the following well-characterized structures: SPI-7, found in Salmonella enterica serovar Typhi; PAP1 or pKLC102, found in Pseudomonas aeruginosa; and the clc element, found in Pseudomonas sp. strain B13. This is the first report of a diverse family of related syntenic genomic islands with a deep evolutionary origin, and our findings challenge the view that genomic islands consist only of independently evolving modules.  相似文献   
98.
It is generally thought that mucosal bacterial pathogens of the genera Haemophilus, Neisseria, and Moraxella elaborate lipopolysaccharide (LPS) that is fundamentally different from that of enteric organisms that express O-specific polysaccharide side chains. Haemophilus influenzae elaborates short-chain LPS that has a role in the pathogenesis of H. influenzae infections. We show that the synthesis of LPS in this organism can no longer be as clearly distinguished from that in other gram-negative bacteria that express an O antigen. We provide evidence that a region of the H. influenzae genome, the hmg locus, is involved in the synthesis of glycoforms in which tetrasaccharide units are added en bloc, not stepwise, to the normal core glycoforms, similar to the biosynthesis of an O-antigen.  相似文献   
99.
We mapped the genetic influences for type 1 diabetes (T1D), using 2,360 single-nucleotide polymorphism (SNP) markers in the 4.4-Mb human major histocompatibility complex (MHC) locus and the adjacent 493 kb centromeric to the MHC, initially in a survey of 363 Swedish T1D cases and controls. We confirmed prior studies showing association with T1D in the MHC, most significantly near HLA-DR/DQ. In the region centromeric to the MHC, we identified a peak of association within the inositol 1,4,5-triphosphate receptor 3 gene (ITPR3; formerly IP3R3). The most significant single SNP in this region was at the center of the ITPR3 peak of association (P=1.7 x 10(-4) for the survey study). For validation, we typed an additional 761 Swedish individuals. The P value for association computed from all 1,124 individuals was 1.30 x 10(-6) (recessive odds ratio 2.5; 95% confidence interval [CI] 1.7-3.9). The estimated population-attributable risk of 21.6% (95% CI 10.0%-31.0%) suggests that variation within ITPR3 reflects an important contribution to T1D in Sweden. Two-locus regression analysis supports an influence of ITPR3 variation on T1D that is distinct from that of any MHC class II gene.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号