首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   822篇
  免费   106篇
  2021年   9篇
  2020年   8篇
  2019年   14篇
  2018年   17篇
  2017年   8篇
  2016年   10篇
  2015年   20篇
  2014年   13篇
  2013年   31篇
  2012年   44篇
  2011年   40篇
  2010年   22篇
  2009年   13篇
  2008年   35篇
  2007年   28篇
  2006年   28篇
  2005年   30篇
  2004年   33篇
  2003年   31篇
  2002年   26篇
  2001年   24篇
  2000年   26篇
  1999年   29篇
  1998年   16篇
  1997年   8篇
  1996年   12篇
  1994年   9篇
  1993年   15篇
  1992年   23篇
  1991年   17篇
  1990年   23篇
  1989年   26篇
  1988年   15篇
  1987年   22篇
  1986年   17篇
  1985年   18篇
  1984年   17篇
  1983年   17篇
  1982年   11篇
  1981年   10篇
  1980年   10篇
  1979年   11篇
  1978年   8篇
  1977年   8篇
  1976年   7篇
  1974年   6篇
  1973年   12篇
  1968年   5篇
  1967年   4篇
  1965年   4篇
排序方式: 共有928条查询结果,搜索用时 15 毫秒
891.
892.
A key to understanding life's great diversity is discerning how competing organisms divide limiting resources to coexist in diverse communities. While temporal resource partitioning has long been hypothesized to reduce the negative effects of interspecific competition, empirical evidence suggests that time may not often be an axis along which animal species routinely subdivide resources. Here, we present evidence to the contrary in the world's most biodiverse group of animals: insect parasites (parasitoids). Specifically, we conducted a meta-analysis of 64 studies from 41 publications to determine if temporal resource partitioning via variation in the timing of a key life-history trait, egg deposition (oviposition), mitigates interspecific competition between species pairs sharing the same insect host. When competing species were manipulated to oviposit at (or near) the same time in or on a single host in the laboratory, competition was common, and one species was typically inherently superior (i.e. survived to adulthood a greater proportion of the time). In most cases, however, the inferior competitor could gain a survivorship advantage by ovipositing earlier (or in a smaller number of cases later) into shared hosts. Moreover, this positive (or in a few cases negative) priority advantage gained by the inferior competitor increased as the interval between oviposition times became greater. The results from manipulative experiments were also correlated with patterns of life-history timing and demography in nature: the more inherently competitively inferior a species was in the laboratory, the greater the interval between oviposition times of taxa in co-occurring populations. Additionally, the larger the interval between oviposition times of competing taxa, the more abundant the inferior species was in populations where competitors were known to coexist. Overall, our findings suggest that temporal resource partitioning via variation in oviposition timing may help to facilitate species coexistence and structures diverse insect communities by altering demographic measures of species success. We argue that the lack of evidence for a more prominent role of temporal resource partitioning in promoting species coexistence may reflect taxonomic differences, with a bias towards larger-sized animals. For smaller species like parasitic insects that are specialized to attack one or a group of closely related hosts, have short adult lifespans and discrete generation times, compete directly for limited resources in small, closed arenas and have life histories constrained by host phenology, temporal resource subdivision via variation in life history may play a critical role in allowing species to coexist by alleviating the negative effects of interspecific competition.  相似文献   
893.
Considerable progress has been made in understanding the physiological basis for variation in the life-history patterns of animals, particularly with regard to the roles of oxidative stress and hormonal regulation. However, an underappreciated and understudied area that could play a role in mediating inter- and intraspecific variation of life history is endoplasmic reticulum (ER) stress, and the resulting unfolded protein response (UPRER). ER stress response and the UPRER maintain proteostasis in cells by reducing the intracellular load of secretory proteins and enhancing protein folding capacity or initiating apoptosis in cells that cannot recover. Proper modulation of the ER stress response and execution of the UPRER allow animals to respond to intracellular and extracellular stressors and adapt to constantly changing environments. ER stress responses are heritable and there is considerable individual variation in UPRER phenotype in animals, suggesting that ER stress and UPRER phenotype can be subjected to natural selection. The variation in UPRER phenotype presumably reflects the way animals respond to ER stress and environmental challenges. Most of what we know about ER stress and the UPRER in animals has either come from biomedical studies using cell culture or from experiments involving conventional laboratory or agriculturally important models that exhibit limited genetic diversity. Furthermore, these studies involve the assessment of experimentally induced qualitative changes in gene expression as opposed to the quantitative variations that occur in naturally existing populations. Almost all of these studies were conducted in controlled settings that are often quite different from the conditions animals experience in nature. Herein, we review studies that investigated ER stress and the UPRER in relation to key life-history traits including growth and development, reproduction, bioenergetics and physical performance, and ageing and senescence. We then ask if these studies can inform us about the role of ER stress and the UPRER in mediating the aforementioned life-history traits in free-living animals. We propose that there is a need to conduct experiments pertaining to ER stress and the UPRER in ecologically relevant settings, to characterize variation in ER stress and the UPRER in free-living animals, and to relate the observed variation to key life-history traits. We urge others to integrate multiple physiological systems and investigate how interactions between ER stress and oxidative stress shape life-history trade-offs in free-living animals.  相似文献   
894.
895.
Effects of nutrient deprivation on Vibrio cholerae   总被引:10,自引:0,他引:10  
Environmental and clinical strains of Vibrio cholerae were exposed to nutrient-free artificial seawater and filtered natural seawater microcosms for selected time intervals and examined for changes in cell morphology and number. Cells observed by transmission electron and epifluorescence microscopy were found to undergo gross alterations in cell morphology with time of exposure. The vibroid cells decreased in volume by 85% and developed into small coccoid forms surrounded by remnant cell walls. The initial number of cells inoculated into nutrient-free microcosms (culturable count and direct viable count) increased 2.5 log10 within 3 days, and even after 75 days the number of viable cells was still 1 to 2 log10 higher than the initial inoculum size. Nutrient-depleted coccoid-shaped cells were restored to normal size and assumed a bacillary shape within 3 h and began to divide within 5 h after nutrient supplementation. The increase in cell number and decrease in cell volume under nutrient-depleted conditions, as well as the rapid growth response after nutrient supplementation, may describe some of the survival mechanisms of V. cholerae in the aquatic environment.  相似文献   
896.
The advantage of sex has been among the most debated issues in biology. Surprisingly, the question of why sexual reproduction generally requires the combination of distinct gamete classes, such as small and large gametes, or gametes with different mating types, has been much less investigated. Why do systems with alternative gamete classes (i.e. systems with either anisogamy or mating types or both) appear even though they restrict the probability of finding a compatible mating partner? Why does the number of gamete classes vary from zero to thousands, with most often only two classes? We review here the hypotheses proposed to explain the origin, maintenance, number, and loss of gamete classes. We argue that fungi represent highly suitable models to help resolve issues related to the evolution of distinct gamete classes, because the number of mating types vary from zero to thousands across taxa, anisogamy is present or not, and because there are frequent transitions between these conditions. We review the nature and number of gamete classes in fungi, and we attempt to draw inferences from these data on the evolutionary forces responsible for their appearance, loss or maintenance, and number.  相似文献   
897.
898.
899.
Comparative morphological analysis of the female reproductive tract in macroglossine bats was undertaken to test the hypothesis that nectarivory arose at least twice within Old World fruit bats. Given that features of the female reproductive tract are not directly involved in adaptations for feeding, this data set should provide a test of the monophyly of macroglossine bats. A cladistic analysis of variation in the structure of the ovaries, oviducts, uterus, and external genitalia supports the hypothesis that Megaloglossus has developed a nectar-feeding habit independent of other macroglossine genera. Most of the variation in female reproductive organs among pteropodids is found in the development of derived external and internal features of the uterus. Fusion of uterine cornua, expansion of the common uterine body, and elaboration of the cervical region are found in a group which includes species of Pteropus, Dobsonia, Nyctimene, and the macroglossines (excluding Megaloglossus). Results of this study are concordant with independent data sets, thus providing a phylogenetic framework to evaluate critically structural and functional design in the evolution of pteropodid feeding mechanisms.  相似文献   
900.
Fatty liver and kidney syndrome, a disorder of young chicks, was studied under laboratory conditions. Affected chicks had enlarged livers (hepatomegaly), an increased content of lipid in the liver, and an increased level of palmitoleic acid in the liver lipids. The disorder was observed mainly in chicks from young parent flocks, and was associated either with commerical diets which were subsequently found to be low in biotin, or with specially formulated low-biotin diets. A third factor, imposition of stress, was required to initiate the disorder. There was evidence of increased lipogenesis causing an increase of triacylglycerols in the liver lipids and an increased production of saturated fatty acids, particularly palmitic acid. Increased levels of palmitoleic acid resulted from an increased desaturation of palmitic acid. Under stress, affected chicks had low blood glucose levels, suggesting that gluconeogenesis was impaired. Since biotin-dependent enzymes are involved in both gluconeogenesis and lipogenesis, it would appear that the relevant enzymes respond differently to a deficiency of biotin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号