首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   849篇
  免费   107篇
  国内免费   2篇
  958篇
  2022年   5篇
  2021年   9篇
  2020年   9篇
  2019年   14篇
  2018年   18篇
  2017年   8篇
  2016年   11篇
  2015年   24篇
  2014年   15篇
  2013年   30篇
  2012年   45篇
  2011年   40篇
  2010年   26篇
  2009年   17篇
  2008年   35篇
  2007年   30篇
  2006年   28篇
  2005年   32篇
  2004年   36篇
  2003年   30篇
  2002年   26篇
  2001年   24篇
  2000年   27篇
  1999年   31篇
  1998年   15篇
  1997年   9篇
  1996年   14篇
  1995年   5篇
  1994年   9篇
  1993年   15篇
  1992年   23篇
  1991年   17篇
  1990年   24篇
  1989年   25篇
  1988年   15篇
  1987年   22篇
  1986年   17篇
  1985年   18篇
  1984年   17篇
  1983年   17篇
  1982年   11篇
  1981年   10篇
  1980年   10篇
  1979年   11篇
  1978年   8篇
  1977年   8篇
  1976年   7篇
  1974年   6篇
  1973年   11篇
  1968年   5篇
排序方式: 共有958条查询结果,搜索用时 8 毫秒
111.
We report here the molecular characterization of transferred DNA (T-DNA) in leguminous tumors incited by Agrobacterium tumefaciens A281 harboring the tumor-inducing plasmid pTiBo542. The T-DNA is composed of two regions named TL (left portion)-DNA and TR (right portion)-DNA, in accordance with the nomenclature for the octopine strains. TL-DNA is defined by several internal HindIII restriction fragments totaling 10.8 kilobase pairs (kbp) in uncloned soybean and alfalfa tumors. Alfalfa tumor DNA may contain one more HindIII fragment at the left end of TL-DNA than does soybean tumor DNA. TR-DNA has a 5.8-kbp BamHI-EcoRI internal fragment. All borders other than the left border of TL-DNA appear to be the same within the detection limits of Southern blot hybridization experiments. The two T-DNA regions are separated by 16 to 19 kbp of DNA not stably maintained in tumors. The distance from the left border of TL-DNA to the right border of TR-DNA is approximately 40 kbp. Loci for the mannityl opines are situated in TR-DNA, based on genetic and biochemical criteria.  相似文献   
112.
113.
Glutamate dehydrogenase is very susceptible to carbamylation which results in loss of activity. The effect of a number of proteolytic enzymes (pronase, trypsin and chymotrypsin) on native and carbamylated glutamate dehydrogenase was tested. In all cases, the carbamylated enzyme was at least twice as susceptible to proteolysis as the native enzyme. Antibodies were prepared against glutamate dehydrogenase and carbamylated glutamate dehydrogenase; the carbamylated enzyme was antigenically indistinguishable from the native enzyme. Preliminary experiments indicate that the carbamylated glutamate dehydrogenase is taken up by ascites tumor cells while glutamate dehydrogenase is not. It seems possible that the effects described can be extrapolated to degradation by lysosomes and to other covalently modified enzymes.  相似文献   
114.
The emergence of systems biology is bringing forth a new set of challenges for advancing science and technology. Defining ways of studying biological systems on a global level, integrating large and disparate data types, and dealing with the infrastructural changes necessary to carry out systems biology, are just a few of the extraordinary tasks of this growing discipline. Despite these challenges, the impact of systems biology will be far-reaching, and significant progress has already been made. Moving forward, the issue of how to use systems biology to improve the health of individuals must be a priority. It is becoming increasingly apparent that the field of systems biology and one of its important disciplines, proteomics, will have a major role in creating a predictive, preventative, and personalized approach to medicine. In this review, we define systems biology, discuss the current capabilities of proteomics and highlight some of the necessary milestones for moving systems biology and proteomics into mainstream health care.  相似文献   
115.
Mitochondrial myopathy patients (MMPs) have impaired oxidative phosphorylation and exercise intolerance. Endurance training of MMPs improves exercise tolerance, but also increases mutational load. To assess the regulation of mitochondrial content in MMPs, we measured proteins involved in 1) biogenesis, 2) oxidative stress, and 3) apoptosis in MMPs and healthy controls (HCs) both before and after endurance training. Before training, MMPs had a greater mitochondrial content, along with a 1.4-fold (P < 0.05) higher expression of the biogenesis regulator peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha). The DNA repair enzyme 8-oxoguanine DNA glycolase-1 (OGG-1), the antioxidant manganese superoxide dismutase (MnSOD), and the apoptotic proteins AIF and Bcl-2 were higher in MMPs compared with HCs. Aconitase, an enzyme sensitive to oxidative stress, was 52% lower (P < 0.05) in MMPs when calculated based on an estimate of mitochondrial volume and oxidative stress-induced protein modifications tended to be higher in MMPs compared with HCs. Endurance training (ET) induced increases in mitochondrial content in both HC subjects and MMPs, but there was no effect of training on the regulatory proteins Tfam or PGC-1alpha. In MMPs, training induced a selective reduction of OGG-1, an increase in MnSOD, and a reduction in aconitase activity. Thus, before training, MMPs exhibited an adaptive response of nuclear proteins indicative of a compensatory increase in mitochondrial content. Following training, several parallel adaptations occurred in MMPs and HCs, which may contribute to previously observed functional improvements of exercise in MMPs. However, our results indicate that muscle from MMPs may be exposed to greater levels of oxidative stress during the course of training. Further investigation is required to evaluate the long-term benefits of endurance training as a therapeutic intervention for mitochondrial myopathy patients.  相似文献   
116.
There is much uncertainty as to whether plants use arogenate, phenylpyruvate, or both as obligatory intermediates in Phe biosynthesis, an essential dietary amino acid for humans. This is because both prephenate and arogenate have been reported to undergo decarboxylative dehydration in plants via the action of either arogenate (ADT) or prephenate (PDT) dehydratases; however, neither enzyme(s) nor encoding gene(s) have been isolated and/or functionally characterized. An in silico data mining approach was thus undertaken to attempt to identify the dehydratase(s) involved in Phe formation in Arabidopsis, based on sequence similarity of PDT-like and ACT-like domains in bacteria. This data mining approach suggested that there are six PDT-like homologues in Arabidopsis, whose phylogenetic analyses separated them into three distinct subgroups. All six genes were cloned and subsequently established to be expressed in all tissues examined. Each was then expressed as a Nus fusion recombinant protein in Escherichia coli, with their substrate specificities measured in vitro. Three of the resulting recombinant proteins, encoded by ADT1 (At1g11790), ADT2 (At3g07630), and ADT6 (At1g08250), more efficiently utilized arogenate than prephenate, whereas the remaining three, ADT3 (At2g27820), ADT4 (At3g44720), and ADT5 (At5g22630) essentially only employed arogenate. ADT1, ADT2, and ADT6 had k(cat)/Km values of 1050, 7650, and 1560 M(-1) S(-1) for arogenate versus 38, 240, and 16 M(-1) S(-1) for prephenate, respectively. By contrast, the remaining three, ADT3, ADT4, and ADT5, had k(cat)/Km values of 1140, 490, and 620 M(-1) S(-1), with prephenate not serving as a substrate unless excess recombinant protein (>150 microg/assay) was used. All six genes, and their corresponding proteins, are thus provisionally classified as arogenate dehydratases and designated ADT1-ADT6.  相似文献   
117.
Radiocarbon analyses were used to determine the "biobased content" of a variety of diverse samples. The theoretical biobased contents of those samples were compared to the biobased content values obtained by radiocarbon analyses. Results of this work indicated that the radiocarbon analyses provided accurate (within +/-3%, absolute) biobased content values for the samples tested. It is not practical to examine the accuracy of the radiocarbon analyses for every possible type of sample matrix. However, based on analyses performed on various types of samples, every indication is that the analyses provide accurate and reliable results on the biobased content of liquid and solid materials.  相似文献   
118.
Huntington disease (HD) reflects the dominant consequences of a CAG-repeat expansion in HTT. Analysis of common SNP-based haplotypes has revealed that most European HD subjects have distinguishable HTT haplotypes on their normal and disease chromosomes and that ∼50% of the latter share the same major HD haplotype. We reasoned that sequence-level investigation of this founder haplotype could provide significant insights into the history of HD and valuable information for gene-targeting approaches. Consequently, we performed whole-genome sequencing of HD and control subjects from four independent families in whom the major European HD haplotype segregates with the disease. Analysis of the full-sequence-based HTT haplotype indicated that these four families share a common ancestor sufficiently distant to have permitted the accumulation of family-specific variants. Confirmation of new CAG-expansion mutations on this haplotype suggests that unlike most founders of human disease, the common ancestor of HD-affected families with the major haplotype most likely did not have HD. Further, availability of the full sequence data validated the use of SNP imputation to predict the optimal variants for capturing heterozygosity in personalized allele-specific gene-silencing approaches. As few as ten SNPs are capable of revealing heterozygosity in more than 97% of European HD subjects. Extension of allele-specific silencing strategies to the few remaining homozygous individuals is likely to be achievable through additional known SNPs and discovery of private variants by complete sequencing of HTT. These data suggest that the current development of gene-based targeting for HD could be extended to personalized allele-specific approaches in essentially all HD individuals of European ancestry.  相似文献   
119.
With the rapid assimilation of genomic information and the equally impressive developments in the field of proteomics, there is an unprecedented interest in biomarker discovery. Although human biofluids represent increasingly attractive samples from which new and more accurate disease biomarkers may be found, the intrinsic person-to-person variability in these samples complicates their discovery. One of the most extensively used animal models for studying human disease is mouse because, unlike humans, they represent a highly controllable experimental model system. Unfortunately, very little is known about the proteomic composition of mouse serum. In this study, a multidimensional fractionation approach on both the protein and the peptide level that does not require depletion of highly abundant serum proteins was combined with tandem mass spectrometry to characterize proteins within mouse serum. Over 12 300 unique peptides that originate from 4567 unique proteins-approximately 16% of all known mouse proteins-were identified. The results presented here represent the broadest proteome coverage in mouse serum and provide a foundation from which quantitative comparisons can be made in this important animal model.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号