首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   244篇
  免费   15篇
  国内免费   46篇
  305篇
  2024年   1篇
  2023年   5篇
  2022年   6篇
  2021年   22篇
  2020年   6篇
  2019年   15篇
  2018年   11篇
  2017年   5篇
  2016年   9篇
  2015年   13篇
  2014年   28篇
  2013年   23篇
  2012年   30篇
  2011年   33篇
  2010年   18篇
  2009年   21篇
  2008年   10篇
  2007年   10篇
  2006年   6篇
  2005年   10篇
  2004年   5篇
  2003年   6篇
  2002年   3篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1986年   1篇
排序方式: 共有305条查询结果,搜索用时 15 毫秒
11.

Background

Extracellular heat shock protein 70 and peptide complexes (eHSP70/HSP70-PCs) regulate a variety of biological behaviors in tumor cells. Whether eHSP70/HSP70-PCs are involved in the epithelial-mesenchymal transition (EMT) of tumor cells remains unclear.

Aims

To determine the effects of eHSP70/HSP70-PCs on EMT of hepatocarcinoma cells.

Methods

The expressions of E-cadherin, HSP70, α-smooth muscle actin protein (α-SMA) and p-p38 were detected immunohistochemically in liver cancer samples. Immunofluorescence, western blotting and real-time RT-PCR methods were used to analyze the effects of eHSP70/HSP70-PCs on the expressions of E-cadherin, α-SMA and p38/MAPK in vivo.

Results

HSP70, E-cadherin, α-SMA and p-p38 were elevated in hepatocellular carcinoma tissues. The expression of HSP70 was positively correlated with malignant differentiated liver carcinoma. The expressions of HSP70, α-SMA and p-p38 correlated with recurrence-free survival after resection. eHSP70/HSP70-PCs significantly promoted the expressions of α-SMA and p-p38 and reduced the expressions of E-cadherin in vivo. The effect was inhibited by SB203580.

Conclusion

The expressions of HSP70, E-cadherin, α-SMA and p-p38 may represent indicators of malignant potential and could discriminate the malignant degree of liver cancer. eHSP70/HSP70-PCs play an important role in the EMT of hepatocellular carcinoma via the p38/MAPK pathway.  相似文献   
12.
13.
In the present investigation, we used directed evolution approach to engineer a lipase from metagenomic origin. A variant S311C, was generated, characterized in detail and compared with wild type. Wild type and variant lipases were overexpressed and purified to homogeneity. The temperature optima of the purified lipases (Variant and wild type) were almost same, and found to be 45 and 50 °C, respectively. The variant protein was highly thermostable (54 times) as compared with the wild type at 60 °C. The variant displayed very high kinetic efficiency over the wild type protein. Analysis of the homology models of wild type and variant lipase showed that the substitution is on the surface of the protein. This substitution, along with hydrophobic residues in near vicinity may be involved in formation of strong hydrophobic channel leading to active site. This study identifies the role of hydrophobic interactions in protein stability along with enhancement of enzyme activity.  相似文献   
14.
Brassica napus (AACC) is a recent allotetraploid species evolved through hybridization between two diploids, B. rapa (AA) and B. oleracea (CC). Due to extensive genome duplication and homoeology within and between the A and C genomes of B. napus, most SSR markers display multiple fragments or loci, which limit their application in genetics and breeding studies of this economically important crop. In this study, we collected 3,890 SSR markers from previous studies and also developed 5,968 SSR markers from genomic sequences of B. rapa, B. oleracea and B. napus. Of these, 2,701 markers that produced single amplicons were putative single-locus markers in the B. napus genome. Finally, a set of 230 high-quality single-locus SSR markers were established and assigned to the 19 linkage groups of B. napus using a segregating population with 154 DH individuals. A subset of 78 selected single-locus SSR markers was proved to be highly stable and could successfully discriminate each of the 45 inbred lines and hybrids. In addition, most of the 230 SSR markers showed the single-locus nature in at least one of the Brassica species of the U’s triangle besides B. napus. These results indicated that this set of single-locus SSR markers has a wide range of coverage with excellent stability and would be useful for gene tagging, sequence scaffold assignment, comparative mapping, diversity analysis, variety identification and association mapping in Brassica species.  相似文献   
15.
16.
Piwi-interacting RNAs (piRNAs) play a key role in spermatogenesis. Here, we describe the piRNAs profiling of primordial germ cells (PGCs), spermatogonial stem cells (SSCs), and the spermatogonium (Sp) during early-stage spermatogenesis in chicken. We obtained 31,361,989 reads from PGCs, 31,757,666 reads from SSCs, and 46,448,327 reads from Sp cells. The length distribution of piRNAs in the three samples showed peaks at 33 nt. The resulting genes were subsequently annotated against the Gene Ontology (GO) database. Five genes (RPL7A, HSPA8, Pum1, CPXM2, and PRKCA) were found to be involved in cellular processes. Interactive pathway analysis (IPA) further revealed three important pathways in early-stage spermatogenesis including the FGF, Wnt, and EGF receptor signaling pathways. The gene Pum1 was found to promote germline stem cell proliferation, but it also plays a role in spermatogenesis. In conclusion, we revealed characteristics of piRNAs during early spermatogonial development in chicken and provided the basis for future research.  相似文献   
17.
In this communication, light harvesting and photoelectrochemical (PEC) hydrogen generation beyond the visible region are realized by an anisotropic plasmonic metal/semiconductor hybrid photocatalyst with precise control of their topology and heterointerface. Controlling the intended configuration of the photocatalytic semiconductor to anisotropic Au nanorods' plasmonic hot spots, through a water phase cation exchange strategy, the site‐selective overgrowth of a CdSe shell evolving from a core/shell to a nanodumbbell is realized successfully. Using this strategy, tip‐preferred efficient photoinduced electron/hole separation and plasmon enhancement can be realized. Thus, the PEC hydrogen generation activity of the Au/CdSe nanodumbbell is 45.29 µmol cm?2 h?1 (nearly 4 times than the core/shell structure) beyond vis (λ > 700 nm) illumination and exhibits a high faradic efficiency of 96% and excellent stability with a constant photocurrent for 5 days. Using surface photovoltage microscopy, it is further demonstrated that the efficient plasmonic hot charge spatial separation, which hot electrons can inject into CdSe semiconductors, leads to excellent performance in the Au/CdSe nanodumbbell.  相似文献   
18.
唐鸿志 《生物工程学报》2019,35(11):2031-2034
环境生物技术,作为一门由现代生物技术与环境工程相结合的新兴交叉学科,已经在环境污染治理、环境监测中得到了广泛的应用,环境友好、高效地处理有机及无机污染,同时变废为宝生产高值化合物为从根本上解决环境问题提供了希望与支持。本专刊报道了环境生物技术在多环芳烃、抗生素、石油基塑料等环境污染物降解领域的基础与应用研究,介绍了吲哚、微生物铁载体等分子在生物修复中的应用,为全面认识环境污染现状、深入开展环境生物技术研究并制定综合治理策略等提供参考。  相似文献   
19.
20.
Aromatase is an enzyme required for the conversion of androgens to estrogens. Estrogens are female sex hormones involved in the development and growth of breast tumors. It has been of significant interest to investigate the structure–function relationship of aromatase since its inhibitors have shown great promise in fighting breast cancer. Aromatase belongs to the cytochrome P450 family, and forms an electron-transfer complex with its partner, NADPH-cytochrome P450 reductase (CPR), during the aromatization reaction. Aromatase is found to be widely expressed in vertebrates with unique substrates androstenedione and testosterone, but with various catalytic capacities reflecting species differences in Km, Vmax, etc. This report will summarize current progress in sequence–function correlation analysis of the aromatase protein family and molecular characterization of the interaction between aromatase and CPR. These studies may lead to a novel field for the development of new inhibitors which interfere with the interaction between aromatase and CPR in order to inhibit the aromatization reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号