首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3677篇
  免费   275篇
  国内免费   339篇
  2024年   7篇
  2023年   59篇
  2022年   131篇
  2021年   255篇
  2020年   137篇
  2019年   180篇
  2018年   177篇
  2017年   135篇
  2016年   202篇
  2015年   246篇
  2014年   271篇
  2013年   324篇
  2012年   362篇
  2011年   324篇
  2010年   196篇
  2009年   167篇
  2008年   194篇
  2007年   154篇
  2006年   124篇
  2005年   101篇
  2004年   89篇
  2003年   75篇
  2002年   52篇
  2001年   40篇
  2000年   34篇
  1999年   40篇
  1998年   24篇
  1997年   29篇
  1996年   30篇
  1995年   14篇
  1994年   23篇
  1993年   10篇
  1992年   11篇
  1991年   12篇
  1990年   11篇
  1989年   8篇
  1988年   6篇
  1987年   3篇
  1986年   4篇
  1985年   6篇
  1984年   2篇
  1983年   3篇
  1981年   2篇
  1979年   3篇
  1978年   2篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   2篇
  1968年   3篇
排序方式: 共有4291条查询结果,搜索用时 15 毫秒
191.
192.
Liu  Hong  Yang  Jie  Wang  Kai  Niu  Tengfei  Huang  Dongya 《Neurochemical research》2019,44(5):1065-1078
Neurochemical Research - Mounting evidences have demonstrated that diet-induced obesity is associated with cognition impairment via increasing oxidative stress and inflammation in the brain....  相似文献   
193.
Previous studies found that the activity of Sortase A, a bacterial surface protein from Staphylococcus aureus, was inhibited by curcumin and its analogues. To explore this inhibitory mechanism, Sortase A and its inhibitors in complex systems were studied by molecular docking, molecular modelling, binding energy decomposition calculation and steered molecular dynamics simulations. Energy decomposition analysis indicated that PRO-163, LEU-169, GLN-172, ILE-182 and ILE-199 are key residues in Sortase A-inhibitor complexes. Furthermore, interactions between the methoxyl group on the benzene ring in the conjugated molecule (curcumin, demethoxycurcumin, bisdemethoxycurcumin) and VAL-168, LEU-169 and GLN-172 induce the inhibitory activity based on the energy decomposition and distance analyses between the whole residues and inhibitors. However, because of its coiled structure, the non-conjugated molecule, tetrahydrocurcumin, with key residues in the binding sites of Sortase A, interacted weakly with SrtA, leading to the loss of inhibitory activity. Based on these results, the methoxyl group on the benzene ring in the conjugated molecule largely influenced the inhibitory activity of the Sortase A inhibitors.  相似文献   
194.
195.
196.
Transient receptor potential vanilloid 3 (TRPV3), robustly expressed in the skin, is a nonselective calcium-permeable cation channel activated by warm temperature, voltage, and certain chemicals. Natural monoterpenoid carvacrol from plant oregano is a known skin sensitizer or allergen that specifically activates TRPV3 channel. However, how carvacrol activates TRPV3 mechanistically remains to be understood. Here, we describe the molecular determinants for chemical activation of TRPV3 by the agonist carvacrol. Patch clamp recordings reveal that carvacrol activates TRPV3 in a concentration-dependent manner, with an EC50 of 0.2 mM, by increasing the probability of single-channel open conformation. Molecular docking of carvacrol into cryo-EM structure of TRPV3 combined with site-directed mutagenesis further identified a unique binding pocket formed by the channel S2-S3 linker important for mediating this interaction. Within the binding pocket consisting of four residues (Ile505, Leu508, Arg509, and Asp512), we report that Leu508 is the most critical residue for the activation of TRPV3 by carvacrol, but not 2-APB, a widely used nonspecific agonist and TRP channel modulator. Our findings demonstrate a direct binding of carvacrol to TRPV3 by targeting the channel S2-S3 linker that serves as a critical domain for chemical-mediated activation of TRPV3. We also propose that carvacrol can function as a molecular tool in the design of novel specific TRPV3 modulators for the further understanding of TRPV3 channel pharmacology.  相似文献   
197.
Mobile element insertions (MEIs) are a major class of structural variants (SVs) and have been linked to many human genetic disorders, including hemophilia, neurofibromatosis, and various cancers. However, human MEI resources from large-scale genome sequencing are still lacking compared to those for SNPs and SVs. Here, we report a comprehensive map of 36 699 non-reference MEIs constructed from 5675 genomes, comprising 2998 Chinese samples (∼26.2×, NyuWa) and 2677 samples from the 1000 Genomes Project (∼7.4×, 1KGP). We discovered that LINE-1 insertions were highly enriched in centromere regions, implying the role of chromosome context in retroelement insertion. After functional annotation, we estimated that MEIs are responsible for about 9.3% of all protein-truncating events per genome. Finally, we built a companion database named HMEID for public use. This resource represents the latest and largest genomewide study on MEIs and will have broad utility for exploration of human MEI findings.  相似文献   
198.
199.
Translation initiation of the viral genomic mRNA (vRNA) of human immunodeficiency virus-type 1 (HIV-1) can be mediated by a cap- or an internal ribosome entry site (IRES)-dependent mechanism. A previous report shows that Staufen1, a cellular double-stranded (ds) RNA-binding protein (RBP), binds to the 5’untranslated region (5′UTR) of the HIV-1 vRNA and promotes its cap-dependent translation. In this study, we now evaluate the role of Staufen1 as an HIV-1 IRES-transacting factor (ITAF). We first confirm that Staufen1 associates with both the HIV-1 vRNA and the Gag protein during HIV-1 replication. We found that in HIV-1-expressing cells, siRNA-mediated depletion of Staufen1 reduces HIV-1 vRNA translation. Using dual-luciferase bicistronic mRNAs, we show that the siRNA-mediated depletion and cDNA-mediated overexpression of Staufen1 acutely regulates HIV-1 IRES activity. Furthermore, we show that Staufen1-vRNA interaction is required for the enhancement of HIV-1 IRES activity. Interestingly, we find that only Staufen1 harboring an intact dsRNA-binding domain 3 (dsRBD3) rescues HIV-1 IRES activity in Staufen1 CRISPR-Cas9 gene edited cells. Finally, we show that the expression of Staufen1-dsRBD3 alone enhances HIV-1 IRES activity. This study provides evidence of a novel role for Staufen1 as an ITAF promoting HIV-1 vRNA IRES activity.  相似文献   
200.

Correction to: The EMBO Journal (2021) 40: e107786. DOI 10.15252/embj.2021107786 | Published online 8 June 2021The authors would like to add three references to the paper: Starr et al and Zahradník et al also reported that the Q498H or Q498R mutation has enhanced binding affinity to ACE2; and Liu et al reported on the binding of bat coronavirus to ACE2.Starr et al and Zahradník et al have now been cited in the Discussion section, and the following sentence has been corrected from:“According to our data, the SARS‐CoV‐2 RBD with Q498H increases the binding strength to hACE2 by 5‐fold, suggesting the Q498H mutant is more ready to interact with human receptor than the wildtype and highlighting the necessity for more strict control of virus and virus‐infected animals”.to“Here, according to our data and two recently published papers, the SARS‐CoV‐2 RBD with Q498H or Q498R increases the binding strength to hACE2 (Starr et al, 2020; Zahradník et al, 2021), suggesting the mutant with Q498H or Q498R is more ready to interact with human receptor than the wild type and highlighting the necessity for more strict control of virus and virus‐infected animals”.The Liu et al citation has been added to the following sentence:“In another paper published by our group recently, RaTG13 RBD was found to bind to hACE2 with much lower binding affinity than SARS‐CoV‐2 though RaTG13 displays the highest whole‐genome sequence identity (96.2%) with the SARS‐CoV‐2 (Liu et al, 2021)”.Additionally, the authors have added the GISAID accession IDs to the sequence names of the SARS‐CoV‐2 in two human samples (Discussion section). To make identification unambiguous, the sequence names have been updated from “SA‐lsf‐27 and SA‐lsf‐37” to “GISAID accession ID: EPI_ISL_672581 and EPI_ISL_672589”.Lastly, the authors declare in the Materials and Methods section that all experiments employed SARS‐CoV‐2 pseudovirus in cultured cells. These experiments were performed in a BSL‐2‐level laboratory and approved by Science and Technology Conditions Platform Office, Institute of Microbiology, Chinese Academy of Sciences.These changes are herewith incorporated into the paper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号