首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8656篇
  免费   764篇
  国内免费   686篇
  2024年   16篇
  2023年   118篇
  2022年   252篇
  2021年   507篇
  2020年   327篇
  2019年   395篇
  2018年   381篇
  2017年   253篇
  2016年   431篇
  2015年   555篇
  2014年   708篇
  2013年   670篇
  2012年   799篇
  2011年   682篇
  2010年   468篇
  2009年   375篇
  2008年   461篇
  2007年   433篇
  2006年   324篇
  2005年   278篇
  2004年   222篇
  2003年   208篇
  2002年   141篇
  2001年   145篇
  2000年   139篇
  1999年   157篇
  1998年   94篇
  1997年   86篇
  1996年   74篇
  1995年   50篇
  1994年   60篇
  1993年   32篇
  1992年   49篇
  1991年   40篇
  1990年   23篇
  1989年   31篇
  1988年   22篇
  1987年   29篇
  1986年   13篇
  1985年   20篇
  1984年   12篇
  1983年   6篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1976年   1篇
  1975年   1篇
  1965年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer‐related deaths in women worldwide. In this study, a large Chinese pedigree with breast cancer including a proband and two female patients was recruited and a familial history of breast cancer was collected by questionnaire. Clinicopathological assessments and neoadjuvant therapy‐related information were obtained for the proband. Blood samples were taken, and gDNA was extracted. The BRCA1/2 and PALB2 genes were screened using next‐generation sequencing by a targeted gene panel. We have successfully identified a novel, germline heterozygous, missense mutation of the gene BRCA2: c.7007G>T, p.R2336L, which is likely to be pathogenic in the proband and her elder sister who both had breast cancer. Furthermore, the risk factors for developing breast cancer in this family are discussed. Thus, genetic counselling and long‐term follow‐up should be provided for this family of breast cancer patients as well as carriers carrying a germline variant of BRCA2: c.7007G>T (p.R2336L).  相似文献   
112.
Natural products were extracted from traditional Chinese herbal emerging as potential therapeutic drugs for treating cardiovascular diseases. This study examines the role and underlying mechanism of dihydromyricetin (DMY), a natural compound extracted from Ampelopsis grossedentata, in atherosclerosis. DMY treatment significantly inhibits atherosclerotic lesion formation, proinflammatory gene expression and the influx of lesional macrophages and CD4-positive T cells in the vessel wall and hepatic inflammation, whereas increases nitric oxide (NO) production and improves lipid metabolism in apolipoprotein E-deficient (Apoe/) mice. Yet, those protective effects are abrogated by using NOS inhibitor L-NAME in Apoe/ mice received DMY. Mechanistically, DMY decreases microRNA-21 (miR-21) and increases its target gene dimethylarginine dimethylaminohydrolase-1 (DDAH1) expression, an effect that reduces asymmetric aimethlarginine (ADMA) levels, and increases endothelial NO synthase (eNOS) phosphorylation and NO production in cultured HUVECs, vascular endothelium of atherosclerotic lesions and liver. In contrast, systemic delivery of miR-21 in Apoe/ mice or miR-21 overexpression in cultured HUVECs abrogates those DMY-mediated protective effects. These data demonstrate that endothelial miR-21-inhibited DDAH1-ADMA-eNOS-NO pathway promotes the pathogenesis of atherosclerosis which can be rescued by DMY. Thus, DMY may represent a potential therapeutic adjuvant in atherosclerosis management.  相似文献   
113.
Heteroatom doping is widely recognized as an appealing strategy to break the capacitance limitation of carbonaceous materials toward sodium storage. However, the concrete effects, especially for heteroatomic phase transformation, during the sodium storage reaction remain a confusing topic. Here, a novel hypercrosslinked polymerization approach is demonstrated to fabricate pyrrole/thiophene hypercrosslinked microporous copolymer and further give porous carbonaceous materials with accurately regulated N/S dual doping corresponding to starting feeding ratios. Significantly, the N doping contributes to the conductivity and surface wettability, while the S doping is bridged to build stable active sites, which can be electrochemically converted into mercaptan anions via faraday reaction and further enhancing reversible capacities. Meanwhile, the abundant S doping can also conduce to the expanded interlayer spacing to shorten the ions diffusion distance, thus optimizing the reaction kinetic. As a result, the N0.2S0.8‐micro‐dominant porous carbon delivers the highest reversible capacity of 521 mAh g?1 at 100 mA g?1 and excellent cyclic stability over 2000 cycles at 2000 mA g?1 with a capacity decay of 0.0145 mAh g?1 per cycle. This work is anticipated to provide an in‐depth understanding of capacitance contribution and illuminate the heteroatomic phase transformation during sodium storage reactions for doping carbonaceous anodes.  相似文献   
114.
Functional nanomaterials are playing a crucial role in the emerging field of energy‐related devices. Recently, as a novel synthesis method, high‐temperature shock (HTS), which is rapid, low cost, eco‐friendly, universal, scalable, and controllable, has provided a promising option for the rational design and synthesis of various high‐quality nanomaterials. In this report, the HTS technique, including the equipment setup and operating principle, is systematically introduced, and recent progress in the synthesis of nanomaterials for energy storage and conversion applications using this HTS method is summarized. The growth mechanisms of nanoparticles and carbonaceous nanomaterials are thoroughly discussed, followed by the summary of the characteristic advantages of the HTS strategy. A series of nanomaterials prepared by the HTS method, including carbon‐based films, metal nanoparticles and compound nanoparticles, show high performance in the diverse applications of storage energy batteries, highly active catalysts, and smart energy devices. Finally, the future perspectives and directions of HTS in nanomanufacturing for broader applications are presented.  相似文献   
115.
In this review, the recent progress in using transient absorption microscopy to image charge transport and dynamics in semiconducting hybrid organic–inorganic perovskites is discussed. The basic principles, instrumentation, and resolution of transient absorption microscopy are outlined. With temporal resolution as high as 10 fs, sub‐diffraction‐limit spatial resolution, and excited‐state structural resolution, these experiments have provided crucial details on charge transport mechanisms that have been previously obscured in conventional ultrafast spectroscopy measurements. Morphology‐dependent mapping unveils spatial heterogeneity in carrier recombination and cooling dynamics. By spatially separating the pump and probe beams, carrier transport across grain boundaries has been directly visualized. Further, femtosecond temporal resolution allows for the examination of nonequilibrium transport directly, revealing extraordinarily long‐range hot carrier migration. The application of transient absorption microscopy is not limited to hybrid perovskites but can also be useful for other polycrystalline materials in which morphology plays an important role in carrier transport.  相似文献   
116.
The lithium–sulfur (Li–S) battery is a next generation high energy density battery, but its practical application is hindered by the poor cycling stability derived from the severe shuttling of lithium polysulfides (LiPSs). Catalysis is a promising way to solve this problem, but the rational design of relevant catalysts is still hard to achieve. This paper reports the WS2–WO3 heterostructures prepared by in situ sulfurization of WO3, and by controlling the sulfurization degree, the structure is controlled, which balances the trapping ability (by WO3) and catalytic activity (by WS2) toward LiPSs. As a result, the WS2–WO3 heterostructures effectively accelerate LiPS conversion and improve sulfur utilization. The Li–S battery with 5 wt% WS2–WO3 heterostructures as additives in the cathode shows an excellent rate performance and good cycling stability, revealing a 0.06% capacity decay each cycle over 500 cycles at 0.5 C. By building an interlayer with such heterostructure‐added graphenes, the battery with a high sulfur loading of 5 mg cm?2 still shows a high capacity retention of 86.1% after 300 cycles at 0.5 C. This work provides a rational way to prepare the metal oxide–sulfide heterostructures with an optimized structure to enhance the performance of Li–S batteries.  相似文献   
117.
Recently, the application of electron backscatter diffraction (EBSD) in halide perovskites has enabled the correlation of the micro‐structural arrangement of polycrystalline grains with other properties (optical, electrical, mechanical, and chemical) in a “pixel‐by‐pixel” approach. Most studies so far have used an ultra‐sensitive electron beam detector that has sensitivity thousands of times higher than a traditional scintillator screen and charge coupled device camera, enabling much lower beam currents. An alternative approach has been the use of low vacuum measurement conditions to avoid charge buildup that leads to damage. This review focuses on introducing the classical EBSD technique to the halide perovskite community, where it has been highly underutilized due to beaminduced damage in these relatively unstable materials. Recent research is used to dispel some common misconceptions about grain boundaries in halide perovskites and highlight what has been learned by comparing and correlating EBSD with other techniques. Additionally, the remaining limitations, development challenges, and future of the EBSD technique for halide perovskites are discussed. Successful utilization of the EBSD technique as a common characterization tool in the halide perovskite community will enable scientists and engineers to develop maps of cross correlated properties, helping to unlock the full potential of this complex material system.  相似文献   
118.
Lithium–sulfur batteries (LSBs) are considered promising candidates for the next‐generation energy‐storage systems due to their high theoretical capacity and prevalent abundance of sulfur. Their reversible operation, however, encounters challenges from both the anode, where dendritic and dead Li‐metal form, and the cathode, where polysulfides dissolve and become parasitic shuttles. Both issues arise from the imperfection of interphases between electrolyte and electrode. Herein, a new lithium salt based on an imide anion with fluorination and unsaturation in its structure is reported, whose interphasial chemistries resolve these issues simultaneously. Lithium 1, 1, 2, 2, 3, 3‐hexafluoropropane‐1, 3‐disulfonimide (LiHFDF) forms highly fluorinated interphases at both anode and cathode surfaces, which effectively suppress formation of Li‐dendrites and dissolution/shuttling of polysulfides, and significantly improves the electrochemical reversibility of LSBs. In a broader context, this new Li salt offers a new perspective for diversified beyond Li‐ion chemistries that rely on a Li‐metal anode and active cathode materials.  相似文献   
119.
Tian  Chan  Deng  Tao  Zhu  Xiuhuang  Gong  Chen  Zhao  Yangyu  Wei  Yuan  Li  Rong  Xu  Xiufeng  He  Miaonan  Zhang  Zhiwei  Cheng  Jing  BenWillem  Mol  Qiao  Jie 《中国科学:生命科学英文版》2020,63(3):319-328
In China,the medical guidelines recommend performing noninvasive prenatal testing (NIPT) with caution for pregnant women aged 35 years or older.However,the Mother and Child Health Care Law suggests that all primiparous women whose age is older than 35 years undergo prenatal diagnosis.These two inconsistent suggestions/recommendations have made obstetricians confused about whether to offer NIPT to these older pregnant women.To face this issue and find out the solution we performed a retrospective study of 189,809 NIPT samples collected from 28 provincial-leveled administrative units in China.Of 1,564women with high-risk pregnancies who underwent NIPT,459 (29.3%) did not participate in follow-up.The compound sensitivity and specificity of NIPT for trisomies 21,18 and 13 detection was 99.1%(95%CI,98.0%-99.6%) and 99.9%(95%CI,98.8%-99.9%),respectively.In secundiparous women,NIPT showed high sensitivity and specificity similar to that in primiparous women.The observed risk for trisomies 21 and 18 significantly increased when the maternal age was 39 and older.After the publication of the current NIPT policy,the follow-up rate at our center was 97.9%;however,a large number of women are not in maternal and infant care networks nationwide,and that makes the follow-up rate outside our center relatively low.Our study shows that to balance the prevention of major aneuploidies and the limited resources for prenatal diagnosis,the cut-off age of 35for invasive prenatal diagnosis might be unnecessary.Although the NIPT guidelines are well written,how to practice it effectively,especially in less industrialized areas,is worth discussing.  相似文献   
120.
本研究使用单因素方法考察了无花果(Ficus carica L.)果皮中花青素的最佳提取条件,并考察了7种参数对花青素提取率的影响。参数设置如下:溶剂性质(水,甲醇,乙醇和丙酮)、提取次数(1~3次)、固液比(1/50,1/100,1/150和1/200)、提取时间(60 min,120 min,180 min和240 min)、甲醇浓度(0,20%,40%,60%,80%和100%)、酸类型(盐酸,乙酸,柠檬酸和酒石酸)和酸浓度(0,1%,2%,5%和10%)。使用pH-示差法测量无花果果皮中单体花色素的含量。研究显示,无花果果皮中花青素的最佳提取条件为:溶剂为甲醇溶剂,提取次数为2次,固液比为1/100,提取时间为180 min,甲醇浓度为80%,酸类型为柠檬酸,柠檬酸浓度为5%。该最佳提取条件下的花青素的提取率达到最高(345.62 mg/100g DS)。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号