首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2108篇
  免费   128篇
  国内免费   212篇
  2448篇
  2024年   12篇
  2023年   43篇
  2022年   80篇
  2021年   156篇
  2020年   90篇
  2019年   88篇
  2018年   92篇
  2017年   63篇
  2016年   104篇
  2015年   131篇
  2014年   171篇
  2013年   173篇
  2012年   218篇
  2011年   198篇
  2010年   111篇
  2009年   89篇
  2008年   105篇
  2007年   90篇
  2006年   86篇
  2005年   56篇
  2004年   48篇
  2003年   56篇
  2002年   32篇
  2001年   14篇
  2000年   16篇
  1999年   23篇
  1998年   18篇
  1997年   14篇
  1996年   9篇
  1995年   9篇
  1994年   8篇
  1993年   10篇
  1992年   12篇
  1991年   9篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   3篇
  1985年   2篇
  1983年   2篇
  1982年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有2448条查询结果,搜索用时 0 毫秒
51.
The balance between bone formation and bone resorption is closely related to bone homeostasis. Osteoclasts, originating from the monocyte/macrophage lineage, are the only cell type possessing bone resorption ability. Osteoclast overactivity is thought to be the major reason underlying osteoclast‐related osteolytic problems, such as Paget's disease, aseptic loosening of prostheses and inflammatory osteolysis; therefore, disruption of osteoclastogenesis is considered a crucial treatment option for these issues. WKYMVm, a synthetic peptide, which is a potent FPR2 agonist, exerts an immunoregulatory effect. This peptide inhibits the production of inflammatory cytokines, such as (IL)‐1β and TNF‐α, thus regulating inflammation. However, there are only few reports on the role of WKYMVm and FPR2 in osteoclast cytology. In the current study, we found that WKYMVm negatively regulates RANKL‐ and lipopolysaccharide (LPS)‐induced osteoclast differentiation and maturation in vitro and alleviates LPS‐induced osteolysis in animal models. WKYMVm down‐regulated the expression of osteoclast marker genes and resorption activity. Furthermore, WKYMVm inhibited osteoclastogenesis directly through reducing the phosphorylation of STAT3 and NF‐kB and indirectly through the CD9/gp130/STAT3 pathway. In conclusion, our findings demonstrated the potential medicinal value of WKYMVm for the treatment of inflammatory osteolysis.  相似文献   
52.
There are many different types of cardiovascular diseases, which impose a huge economic burden due to their extremely high mortality rates, so it is necessary to explore the underlying mechanisms to achieve better supportive and curative care outcomes. Sphingosine 1‐phosphate (S1P) is a bioactive lipid mediator with paracrine and autocrine activities that acts through its cell surface S1P receptors (S1PRs) and intracellular signals. In the circulatory system, S1P is indispensable for both normal and disease conditions; however, there are very different views on its diverse roles, and its specific relevance to cardiovascular pathogenesis remains elusive. Here, we review the synthesis, release and functions of S1P, specifically detail the roles of S1P and S1PRs in some common cardiovascular diseases, and then address several controversial points, finally, we focus on the development of S1P‐based therapeutic approaches in cardiovascular diseases, such as the selective S1PR1 modulator amiselimod (MT‐1303) and the non‐selective S1PR1 and S1PR3 agonist fingolimod, which may provide valuable insights into potential therapeutic strategies for cardiovascular diseases.  相似文献   
53.
Functional nanomaterials are playing a crucial role in the emerging field of energy‐related devices. Recently, as a novel synthesis method, high‐temperature shock (HTS), which is rapid, low cost, eco‐friendly, universal, scalable, and controllable, has provided a promising option for the rational design and synthesis of various high‐quality nanomaterials. In this report, the HTS technique, including the equipment setup and operating principle, is systematically introduced, and recent progress in the synthesis of nanomaterials for energy storage and conversion applications using this HTS method is summarized. The growth mechanisms of nanoparticles and carbonaceous nanomaterials are thoroughly discussed, followed by the summary of the characteristic advantages of the HTS strategy. A series of nanomaterials prepared by the HTS method, including carbon‐based films, metal nanoparticles and compound nanoparticles, show high performance in the diverse applications of storage energy batteries, highly active catalysts, and smart energy devices. Finally, the future perspectives and directions of HTS in nanomanufacturing for broader applications are presented.  相似文献   
54.
Additives are widely adopted for efficient, stable, and hysteresis‐free perovskite solar cells and play an important role in various breakthroughs of perovskite solar cells (PSCs). Herein the various additives adopted for PSCs are reviewed and their functioning mechanism and influence on device performance is described. The main roles of additives, modulating morphology of perovskite films, stabilizing phase of formamidinium (FA) and cesium (Cs)‐based perovskites, adjusting energy level alignment in PSCs, suppressing nonradiative recombination in perovskites, eliminating hysteresis, enhancing operational stability of PSCs, are summarized.  相似文献   
55.
Alginate is an important polysaccharide that is commonly used as a gelling agent in foods, cosmetics and healthcare products. Currently, all alginate used commercially is extracted from brown seaweed. However, with environmental changes such as increasing ocean temperature and the increasing number of biotechnological uses of alginates with specific properties, there is an emerging need for more reliable and customizable sources of alginate. An alternative to seaweed for alginate production is Pseudomonas aeruginosa, a common Gram-negative bacterium that can form alginate-containing biofilms. However, P. aeruginosa is an opportunistic pathogen that can cause life-threatening infections in immunocompromised patients. Therefore, we sought to engineer a non-pathogenic P. aeruginosa strain that is safe for commercial production of alginate. Using a homologous recombination strategy, we sequentially deleted five key pathogenicity genes from the P. aeruginosa chromosome, resulting in the marker-free strain PGN5. Intraperitoneal injection of mice with PGN5 resulted in 0% mortality, while injection with wild-type P. aeruginosa resulted in 95% mortality, providing evidence that the systemic virulence of PGN5 is highly attenuated. Importantly, PGN5 produces large amounts of alginate in response to overexpression of MucE, an activator of alginate biosynthesis. The alginate produced by PGN5 is structurally identical to alginate produced by wild-type P. aeruginosa, indicating that the alginate biosynthetic pathway remains functional in this modified strain. The genetic versatility of P. aeruginosa will allow us to further engineer PGN5 to produce alginates with specific chemical compositions and physical properties to meet different industrial and biomedical needs.  相似文献   
56.
Host microbiomes play a critical role in host fitness and health. Whilst the current 'holobiont' concept framework has greatly expanded eco-evolutionary and functional understanding of host-microbiome interactions, the important role of biotic interactions and microbial loop (compositional linkage between soil, plant and animal) in shaping host-microbiome are poorly understood. We proposed an 'eco-holobiont' concept to fill the knowledge gap.  相似文献   
57.
ABSTRACT

The octopus Cistopus indicus is an important target of cephalopod fisheries in China. It is widely distributed in the South Pacific and tropical Indian Ocean, from the South China Sea, the Philippines, Malaysia, to Indian and Pakistan seas. We collected specimens from five sites in China and Vietnam (Zhoushan, Wenzhou, Shacheng, Zhanjiang and Mangjie). A fragment of 675bp of cytochrome b (Cytb) was amplified from 95 individuals. A total of 27 haplotypes and 78 variable nucleotide sites was observed. High haplotype diversity and low nucleotide diversity were observed in all populations. The phylogenetic analysis separated these populations into two clades; one was composed of three populations (Zhoushan, Wenzhou and Shacheng), the other of two (Zhanjiang, Mangjie). AMOVA analysis detected that 4.67% of the genetic variation occurred within populations and 95.33% occurred among populations. FST values ranged from 0.014 to 0.993, highlighting the high genetic variation among the populations. Assuming a molecular clock with a rate of 2.15–2.6%/Ma for the Cytb gene, the two clades may have diverged 2.88–3.49 million years ago (Pliocene). Neutral evolution tests and mismatch distribution analysis suggested recent population expansion. The present results revealed valuable information for genetic assessment, management and conservation of this species.  相似文献   
58.
59.
目的探讨粪菌移植(fecal microbiota transplantation,FMT)对非酒精性脂肪性肝病(nonalcoholic fatty liver disease,NAFLD)大鼠肠黏膜屏障的保护作用。方法健康雄性SD大鼠30只,随机分为3组:正常对照组(control group,C组)10只,予正常饮食;高脂模型组(model group,M组)10只、粪菌移植治疗组(treatment group,T组)10只,M组和T组均予高脂饮食。T组予粪菌液灌胃2 mL/次,隔日1次,粪菌液灌胃的前一天晚上及当天早上均予奥美拉唑镁肠溶片灌胃;C组及M组同时予奥美拉唑及生理盐水灌胃。喂养12周后实验结束,测定血中TG、ALT、AST水平;苏丹黑B染色观察肝脏病理学变化;取回肠末端肠组织行HE染色及扫描电镜观察肠黏膜结构变化。结果与M组大鼠相比,T组血清TG、ALT、AST水平降低,差异有统计学意义(均P0.05)。T组大鼠肝脏苏丹黑B染色可见肝细胞内脂肪沉积明显减少,脂肪变性程度较M组减轻。T组大鼠肠组织HE染色肠绒毛轻度水肿,排列较整齐、紧密。扫描电镜中可见T组大鼠肠绒毛形态较饱满,排列比较紧密,微绒毛之间的间隙变小。结论粪菌移植能改善肝功能,减轻肝脏脂肪变,降低肠道通透性,改善肠黏膜屏障功能。  相似文献   
60.
Litter decomposition, a fundamental process of nutrient cycling and energy flow in freshwater ecosystems, is driven by a diverse array of decomposers. As an important component of the heterotrophic food web, meiofauna can provide a trophic link between leaf‐associated microbes (i.e., bacteria and fungi)/plant detritus and macroinvertebrates, though their contribution to litter decomposition is not well understood. To investigate the role of different decomposer communities in litter decomposition, especially meiofauna, we compared the litter decomposition of three leaf species with different lignin to nitrogen ratios in litter bags with different mesh sizes (0.05, 0.25, and 2 mm) in a forested stream, in China for 78 days. The meiofauna significantly enhanced the decomposition of leaves of high‐and medium‐ quality, while decreasing (negative effect) or increasing (positive effect) the fungal biomass and diversity. Macrofauna and meiofauna together contributed to the decomposition of low‐quality leaf species. The presence of meiofauna and macrofauna triggered different aspects of the microbial community, with their effects on litter decomposition varying as a function of leaf quality. This study reveals that the meiofauna increased the trophic complexity and modulated their interactions with microbes, highlighting the important yet underestimated role of meiofauna in detritus‐based ecosystems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号