首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   19篇
  国内免费   28篇
  2023年   2篇
  2022年   4篇
  2021年   11篇
  2020年   11篇
  2019年   11篇
  2018年   17篇
  2017年   14篇
  2016年   17篇
  2015年   24篇
  2014年   18篇
  2013年   16篇
  2012年   21篇
  2011年   14篇
  2010年   12篇
  2009年   11篇
  2008年   5篇
  2007年   6篇
  2006年   12篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1998年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1985年   1篇
排序方式: 共有244条查询结果,搜索用时 31 毫秒
21.
15-Deoxy-Delta(12,14)-PDJ(2) (15d-PGJ(2)) is a degradation product of PGD(2) that has been proposed as an anti-inflammatory compound because of its various inhibitory effects, some of which are mediated by peroxisome proliferator-activated receptor-gamma. In contrast to its reported inhibitory effects on macrophages and other cells, we found that this compound is a potent activator of eosinophils, inducing calcium mobilization, actin polymerization, and CD11b expression. It is selective for eosinophils, having little or no effect on neutrophils or monocytes. 15d-PGJ(2) has an EC(50) of approximately 10 nM, similar to that of its precursor, PGD(2). The concentrations of 15d-PGJ(2) required to activate eosinophils are thus much lower than those required for its anti-inflammatory effects (usually micromolar). 15-Deoxy-Delta(12,14)-prostaglandin D(2) (15d-PGD(2)) is also a potent activator of eosinophils, with an EC(50) about the same as that of PGD(2), whereas Delta(12)-PGJ(2) is slightly less potent. Eosinophils pretreated with PGD(2) no longer respond to 15d-PGJ(2), and vice versa, but in both cases the cells still respond to another eicosanoid proinflammatory mediator, 5-oxo-6,8,11,14-eicosatetraenoic acid. This indicates that the effects of 15d-PGJ(2) are mediated by the DP(2)/chemoattractant receptor-homologous molecule expressed on Th2 cells that has recently been identified in eosinophils. 15d-PGJ(2) is selective for the DP(2) receptor, in that it has no effect on DP(1) receptor-mediated adenylyl cyclase activity in platelets. We conclude that 15d-PGJ(2) and 15d-PGD(2) are selective DP(2) receptor agonists that activate human eosinophils with potencies at least 100 times greater than those for the proposed anti-inflammatory effects of 15d-PGJ(2) on other cells.  相似文献   
22.
引水对杭州西湖轮虫群落结构的影响   总被引:6,自引:0,他引:6  
1990 ̄1991年和1995年对引流线塘江水后的杭州西湖轮虫的群落结构进行了调查。引水前1984年的轮虫密度为1635个/L;引水第一个五年后的1990 ̄1991年,轮虫密度为947个/L,生物量为1.268mg/L,多样性指数为1.71,显著减少了轮虫的密度,但第二个五年后的1995年,轮虫密度又增为1495个/L,生物量0.963mg/L,多样性指数降为1.64。引水前期和后期的方差分析结果  相似文献   
23.
24.
25.
26.
Poliovirus genomic RNA replication, protein translation, and virion assembly are performed in the cytoplasm of host cells. However, this does not mean that there is no relationship between poliovirus infection and the cellular nucleus. In this study, recombinant fluorescence-tagged poliovirus 3CD and 3C' proteins were shown to be expressed mainly in the cytoplasm of Vero cells in the absence of other viral proteins. However, upon poliovirus infection, many of these proteins redistributed to the nucleus, as well as to the cytoplasm. A series of transfection experiments revealed that the poliovirus 2A(pro) was responsible for the same redistribution of 3CD and 3C' proteins to the nucleus. Furthermore, a mutant 2A(pro) protein lacking protease activity abrogated this effect. The poliovirus 2A(pro) protein was also found to co-localize with the Nup153 protein, a component of the nuclear pore complexes on the nuclear envelope. These data provide further evidence that there are intrinsic interactions between poliovirus proteins and the cell nucleus, despite that many processes in the poliovirus replication cycle occur in the cytoplasm.  相似文献   
27.
Flaviviruses are a group of single-stranded, positive-sense RNA viruses causing ∼100 million infections per year. We have recently shown that flaviviruses produce a unique, small, noncoding RNA (∼0.5 kb) derived from the 3′ untranslated region (UTR) of the genomic RNA (gRNA), which is required for flavivirus-induced cytopathicity and pathogenicity (G. P. Pijlman et al., Cell Host Microbe, 4: 579-591, 2008). This RNA (subgenomic flavivirus RNA [sfRNA]) is a product of incomplete degradation of gRNA presumably by the cellular 5′-3′ exoribonuclease XRN1, which stalls on the rigid secondary structure stem-loop II (SL-II) located at the beginning of the 3′ UTR. Mutations or deletions of various secondary structures in the 3′ UTR resulted in the loss of full-length sfRNA (sfRNA1) and production of smaller and less abundant sfRNAs (sfRNA2 and sfRNA3). Here, we investigated in detail the importance of West Nile virus Kunjin (WNVKUN) 3′ UTR secondary structures as well as tertiary interactions for sfRNA formation. We show that secondary structures SL-IV and dumbbell 1 (DB1) downstream of SL-II are able to prevent further degradation of gRNA when the SL-II structure is deleted, leading to production of sfRNA2 and sfRNA3, respectively. We also show that a number of pseudoknot (PK) interactions, in particular PK1 stabilizing SL-II and PK3 stabilizing DB1, are required for protection of gRNA from nuclease degradation and production of sfRNA. Our results show that PK interactions play a vital role in the production of nuclease-resistant sfRNA, which is essential for viral cytopathicity in cells and pathogenicity in mice.Arthropod-borne flaviviruses such as West Nile virus (WNV), dengue virus (DENV), and Japanese encephalitis virus (JEV) cause major outbreaks of potentially fatal disease and affect over 50 million people every year. The highly pathogenic North American strain of WNV (WNVNY99) has already claimed more than 1,000 lives with over 27,000 cases reported since its emergence in New York in 1999 and has raised global public health concerns (9). In contrast, the closely related Australian strain of WNV, WNVKUN, is highly attenuated and does not cause overt disease in humans and animals (11). WNVKUN has been used extensively as a model virus to study flavivirus replication and flavivirus-host interactions (13, 14, 16-19, 26, 38, 39).The ∼11-kb positive-stranded, capped WNV genomic RNA (gRNA) lacks a poly(A) tail and consists of 5′ and 3′ untranslated regions (UTRs) flanking one open reading frame, which encodes the viral proteins required for the viral life cycle (6, 15, 38, 39). Flavivirus UTRs are involved in translation and initiation of RNA replication and likely determine genome packaging (13, 14, 16, 21, 30, 39-41). Both the 5′ UTR (∼100 nucleotides [nt] in size) and the 3′ UTR (from ∼400 to 700 nucleotides) can form secondary and tertiary structures which are highly conserved among mosquito-borne flaviviruses (1, 8, 10, 14, 29, 32, 34). More specifically, the WNVKUN 3′ UTR consists of several conserved regions and secondary structures (Fig. (Fig.1A)1A) which were previously predicted or shown to exist in various flaviviruses by computational and chemical analyses, respectively (4, 10, 25, 26, 29-32). The 5′ end of the 3′ UTR starts with an AU-rich region which can form stem-loop structure I (SL-I) followed by SL-II, which we previously showed to be vitally important for subgenomic flavivirus RNA (sfRNA) production (26; see also below). SL-II is followed by a short, repeated conserved hairpin (RCS3) and SL-III (26). Further downstream of SL-III are the SL-IV and CS3 structures, which are remarkably similar to the preceding SL-II-RCS3 structure (26, 29). Further downstream of the SL-IV-CS3 structure are dumbbells 1 and 2 (DB1 and DB2, respectively) followed by a short SL and the 3′ SL (25, 26).Open in a separate windowFIG. 1.(A) Model of the WNVKUN 3′ UTR RNA structure. Highlighted in bold are the secondary structures investigated here. Dashed lines indicate putative PKs. The two sites of the putative PK interactions are shown in open boxes. sfRNA1, -2, -3, and -4 start sites are indicated by arrows. (R)CS, (repeated) conserved sequence; DB, dumbbell structure; PK, pseudoknot; SL, stem-loop. (B) Structural model of PK1 in SL-II with disruptive mutations. Nucleotide numbering is from the end of the 3′ UTR. The sfRNA1 start is indicated by an arrow. Nucleotides forming PK1 are on a gray background, and mutated nucleotides are white on a black background. (C) Sequences mutated in the different constructs. Nucleotides in the wt PK sequences used for mutations are bold and underlined. Introduced mutations are shown under the corresponding nucleotides in the wt sequence.The described structures have been investigated in some detail for their requirement in RNA replication and translation. Generally, a progressive negative effect on viral growth was shown with progressive deletions into the 3′-proximal region of the JEV 3′ UTR (41). However, only a relatively short region of the JEV 3′ UTR, consisting of the 3′-terminal 193 nt, was shown to be absolutely essential for gRNA replication (41). The minimal region for DENV replication was reported to be even shorter (23). Extensive analysis has shown that the most 3′-terminal, essential regions of the 3′ UTR include the cyclization sequence and 3′ SL, which are required for efficient RNA replication (2, 14, 16, 23, 35). As we showed, deletion of SL-II or SL-I did not overtly affect WNVKUN replication (26). However, deletion of CS2, RCS2, CS3, or RCS3 in WNV replicon RNA significantly reduced RNA replication but not translation (20), indicating that these elements facilitate but are not essential for RNA replication. In addition, it was shown that deletion of DB1 or DB2 resulted in a viable mutant virus that was reduced in growth efficiency, while deletion of both DB structures resulted in a nonviable mutant (23).In addition to the above-mentioned secondary stem-loop structures, computational and chemical analysis of the flavivirus 3′ UTR suggested the presence of 5 pseudoknot (PK) interactions (Fig. (Fig.1A)1A) (25, 26, 32). A PK is a structure formed upon base pairing of a single-stranded region of RNA in the loop of a hairpin to a stretch of complementary nucleotides elsewhere in the RNA chain (Fig. (Fig.1B).1B). These structures are referred to as hairpin type (H-type) PKs (3), and they usually stabilize secondary RNA structures. Typically, the final tertiary structure does not significantly alter the preformed secondary structure (5). In general, PK interactions have been shown to be important in biological processes such as initiation and/or elongation of translation, initiation of gRNA replication, and ribosomal frameshifting for a number of different viruses, including flaviviruses (reviewed in references 3 and 22). The first PK in the WNV 3′ UTR was predicted to form in SL-II, followed by a similar PK in SL-IV (26) (PK1 and PK2 in Fig. Fig.1A).1A). For the DENV, yellow fever virus (YFV), and JEV subgroup of flaviviruses, two PKs further downstream were predicted to form between DB1 and DB2 and corresponding single-stranded RNA regions located further downstream (25) (PK3 and PK4 in Fig. Fig.1A).1A). The formation of these structures is supported by covariations in the WNV RNAs. In addition, a PK was proposed to form between a short SL and the 3′ SL at the 3′ terminus of the viral genome (32) (PK5 in Fig. Fig.1A1A).Importantly, in addition to its role in viral replication and translation, we have shown that the WNVKUN 3′ UTR is important for the production of a small noncoding RNA fragment designated sfRNA (26). This short RNA fragment of ∼0.5 kb is derived from the 3′ UTR of the gRNA and exclusively produced by the members of the Flavivirus genus of the Flaviviridae family, where it is required for efficient viral replication, cytopathicity, and pathogenicity (26). Our studies suggested that sfRNA is a product of incomplete degradation of the gRNA presumably by the cellular 5′-3′ exoribonuclease XRN1, resulting from XRN1 stalling on the rigid secondary/tertiary structures located at the beginning of the 3′ UTR (26). XRN1 is an exoribonuclease which usually degrades mRNA from the 5′ to the 3′ end as part of cellular mRNA decay and turnover (33), and it was shown previously that XRN1 can be stalled by SL structures (28). Mutations or deletions of WNV 3′ UTR secondary structures resulted in the loss of full-length sfRNA (sfRNA1) and production of smaller and less abundant sfRNAs (sfRNA2 and sfRNA3) (26). In particular, SL-II (Fig. (Fig.1A)1A) was shown to be important for sfRNA1 production; deletion of this structure either alone or in conjunction with other structures located downstream of SL-II abolished sfRNA1 production, leading to the production of the smaller RNA fragments sfRNA2 and sfRNA3.Here, we extended our investigation and studied the importance of several predicted 3′ UTR secondary structures and PK interactions for the production of sfRNA. To further understand the generation mechanism of sfRNA and its requirements, we deleted or mutated a number of RNA structures in the WNVKUN 3′ UTR and investigated the size and amount of sfRNA generated from these mutant RNAs. The results show that not only SLs but also PK interactions play a vital role in stabilizing the 3′ UTR RNA and preventing complete degradation of viral gRNA to produce nuclease-resistant sfRNA, which is required for efficient virus replication and cytopathicity in cells and virulence in mice.  相似文献   
28.
Dengue virus (DENV) is the most prevalent mosquito-borne viral pathogen in humans. Neither vaccine nor antiviral therapy is currently available for DENV. We report here that N-sulfonylanthranilic acid derivatives are allosteric inhibitors of DENV RNA-dependent RNA polymerase (RdRp). The inhibitor was identified through high-throughput screening of one million compounds using a primer extension-based RdRp assay [substrate poly(C)/oligo(G)20]. Chemical modification of the initial “hit” improved the compound potency to an IC50 (that is, a concentration that inhibits 50% RdRp activity) of 0.7 μM. In addition to suppressing the primer extension-based RNA elongation, the compound also inhibited de novo RNA synthesis using a DENV subgenomic RNA, but at a lower potency (IC50 of 5 μM). Remarkably, the observed anti-polymerase activity is specific to DENV RdRp; the compound did not inhibit WNV RdRp and exhibited IC50s of >100 μM against hepatitis C virus RdRp and human DNA polymerase α and β. UV cross-linking and mass spectrometric analysis showed that a photoreactive inhibitor could be cross-linked to Met343 within the RdRp domain of DENV NS5. On the crystal structure of DENV RdRp, Met343 is located at the entrance of RNA template tunnel. Biochemical experiments showed that the order of addition of RNA template and inhibitor during the assembly of RdRp reaction affected compound potency. Collectively, the results indicate that the compound inhibits RdRp through blocking the RNA tunnel. This study has provided direct evidence to support the hypothesis that allosteric pockets from flavivirus RdRp could be targeted for antiviral development.The family Flaviviridae consists of three genera: Flavivirus, Pestivirus, and Hepacivirus. The genus Flavivirus contains about 73 viruses, many of which are arthropod-borne and pose major public health threats worldwide (15). The four serotypes of dengue virus infect 50 to 100 million people each year, with approximately 500,000 cases developing into life-threatening dengue hemorrhage fever (DHF) and dengue shock syndrome (DSS), leading to about 20,000 deaths. In addition to DENV, West Nile virus (WNV), Japanese encephalitis virus (JEV), yellow fever virus (YFV), and tick-borne encephalitis virus (TBEV) also cause significant human diseases. No antiviral therapy is currently available for treatment of flavivirus infections. Human vaccines are only available for YFV, JEV, and TBEV (15). Development of antiviral therapy and new vaccines is urgently needed for flaviviruses.The flavivirus genome is a single-stranded RNA of plus-sense polarity. The genomic RNA contains a 5′ untranslated region (UTR), a single open reading frame, and a 3′ UTR. The single open reading frame encodes a long polyprotein that is processed by viral and host proteases into 10 mature viral proteins. Three structural proteins (Capsid [C], premembrane [prM], and envelope [E]) are components of virus particles. Seven nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) are responsible for viral replication (40), virion assembly (19, 21, 24, 33), and innate immunity antagonism (4, 16, 23, 29, 30). Two viral proteins encode enzymatic activities that have been targeted for antiviral development. NS3 functions as a protease (with NS2B as a cofactor), helicase, 5′-RNA triphosphatase, and nucleoside triphosphatase (7, 14, 42). The N-terminal part of NS5 is a methyltransferase that methylates the N7 and 2′-O positions of the viral RNA cap structure (13, 18, 37); the C-terminal part of NS5 has an RNA-dependent RNA polymerase (RdRp) activity (1, 39). The RdRp activity is unique to RNA viruses and therefore represents an attractive antiviral target.Two types of inhibitors could be developed to suppress viral polymerases. Type 1 inhibitors are nucleoside/nucleotide analogs that function as RNA or DNA chain terminators; about half of the current antiviral drugs are nucleotide analogs (10). For flaviviruses, a nucleoside analog (7-deaza-2′-C-methyl-adenosine), originally developed for hepatitis C virus (HCV) RdRp, showed anti-DENV activity (32, 38). We recently reported a similar adenosine analog (7-deaza-2′-C-acetylene-adenosine) that potently inhibited DENV both in cell culture and in mice; unfortunately, this compound showed side effects during a 2-week in vivo toxicity study (44). Nevertheless, these studies have proved the concept that nucleoside analogs could potentially be developed for flavivirus therapy. Type 2 inhibitors are non-nucleoside inhibitors (NNI) which bind to allosteric pockets of protein to block enzymatic activities; the mechanism of action of NNI includes structural alteration of polymerase to an inactive conformation, blocking the conformational switch from polymerase initiation to elongation, or impeding the processivity of polymerase elongation (11). A broad range of chemical classes have been identified as NNI, including inhibitors of HIV (9, 35) and HCV (3, 5, 11, 25).In the present study, we performed high-throughput screening (HTS) to search for NNI of DENV RdRp. The HTS and chemistry synthesis led to the identification of N-sulfonylanthranilic acid derivatives as inhibitors of DENV RdRp. The compounds specifically inhibit DENV RdRp. UV cross-linking experiments mapped the compound binding site to the RdRp domain of DENV NS5. Amino acid Met343, located at the entrance of RNA template tunnel of the DENV RdRp, was cross-linked to the compound. These results, together with biochemistry experiments, suggest that the compound blocks the RdRp activity through binding to the RNA template tunnel of the polymerase.  相似文献   
29.
Corticotroph-derived glycoprotein hormone (CGH), also referred to as thyrostimulin, is a noncovalent heterodimer of glycoprotein hormone alpha 2 (GPHA2) and glycoprotein hormone beta 5 (GPHB5). Here, we demonstrate that both subunits of CGH are expressed in the corticotroph cells of the human anterior pituitary, as well as in skin, retina, and testis. CGH activates the TSH receptor (TSHR); (125)I-CGH binding to cells expressing TSHR is saturable, specific, and of high affinity. In competition studies, unlabeled CGH is a potent competitor for (125)I-TSH binding, whereas unlabeled TSH does not compete for (125)I-CGH binding. Binding and competition analyses are consistent with the presence of two binding sites on the TSHR transfected baby hamster kidney cells, one that can interact with either TSH or CGH, and another that binds CGH alone. Transgenic overexpression of GPHB5 in mice produces elevations in serum T(4) levels, reductions in body weight, and proptosis. However, neither transgenic overexpression of GPHA2 nor deletion of GPHB5 produces an overt phenotype in mice. In vivo administration of CGH to mice produces a dose-dependent hyperthyroid phenotype including elevation of T(4) and hypertrophy of cells within the inner adrenal cortex. However, the distinctive expression patterns and binding characteristics of CGH suggest that it has endogenous biological roles that are discrete from those of TSH.  相似文献   
30.
Dothistromin is a polyketide toxin, produced by a fungal forest pathogen, with structural similarity to the aflatoxin precursor versicolorin B. Biochemical and genetic studies suggested that there are common steps in the biosynthetic pathways for these metabolites and showed similarities between some of the genes. A polyketide synthase gene (pksA) was isolated from dothistromin-producing Dothistroma septosporum by hybridization with an aflatoxin ortholog from Aspergillus parasiticus. Inactivation of this gene in D. septosporum resulted in mutants that could not produce dothistromin but that could convert exogenous aflatoxin precursors, including norsolorinic acid, into dothistromin. The mutants also had reduced asexual sporulation compared to the wild type. So far four other genes are known to be clustered immediately alongside pksA. Three of these (cypA, moxA, avfA) are predicted to be orthologs of aflatoxin biosynthetic genes. The other gene (epoA), located between avfA and moxA, is predicted to encode an epoxide hydrolase, for which there is no homolog in either the aflatoxin or sterigmatocystin gene clusters. The pksA gene is located on a small chromosome of ~1.3 Mb in size, along with the dothistromin ketoreductase (dotA) gene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号