首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11665篇
  免费   1055篇
  国内免费   1165篇
  13885篇
  2024年   44篇
  2023年   196篇
  2022年   409篇
  2021年   674篇
  2020年   474篇
  2019年   556篇
  2018年   523篇
  2017年   397篇
  2016年   525篇
  2015年   767篇
  2014年   921篇
  2013年   919篇
  2012年   1087篇
  2011年   979篇
  2010年   554篇
  2009年   537篇
  2008年   618篇
  2007年   531篇
  2006年   418篇
  2005年   332篇
  2004年   317篇
  2003年   268篇
  2002年   258篇
  2001年   186篇
  2000年   167篇
  1999年   154篇
  1998年   109篇
  1997年   97篇
  1996年   101篇
  1995年   73篇
  1994年   83篇
  1993年   59篇
  1992年   69篇
  1991年   72篇
  1990年   51篇
  1989年   34篇
  1988年   42篇
  1987年   23篇
  1986年   31篇
  1985年   31篇
  1984年   20篇
  1983年   26篇
  1982年   16篇
  1980年   14篇
  1979年   14篇
  1977年   11篇
  1975年   13篇
  1974年   12篇
  1973年   11篇
  1970年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
白粉病菌(Blumeria graminis)是一类高度专化性的寄生真菌,可侵染650多种单子叶植物和 9000多种双子叶植物,能够引起多种麦类作物的白粉病,给农业生产带来巨大的损失。由于白粉病菌生理小种多、变异快,所以利用专化性抗病基因难以解决植物的持久抗病性问题。人们在研究大麦白粉病时.发现大麦Mlo基因的隐性突变可导致大麦对绝大多数白粉病菌生理小种的高效持久的广谱抗病性。Schulze-Lefert等多家实验室合作于1997年成功克隆了野生的 Mlo基因。进一步研究表明.该基因编码一种植物特有的具有7个跨膜区和羧基端长尾的膜蛋白(Mlo),它可能对植物细胞的坏死起负调控作用。但Mlo基因如何表达及其在白粉病菌发育中的作用机制尚不清楚。  相似文献   
62.
Increasing evidence demonstrates the dissociation of fat deposition, the inflammatory response, and insulin resistance in the development of obesity-related metabolic diseases. As a regulatory enzyme of glycolysis, inducible 6-phosphofructo-2-kinase (iPFK2, encoded by PFKFB3) protects against diet-induced adipose tissue inflammatory response and systemic insulin resistance independently of adiposity. Using aP2-PFKFB3 transgenic (Tg) mice, we explored the ability of targeted adipocyte PFKFB3/iPFK2 overexpression to modulate diet-induced inflammatory responses and insulin resistance arising from fat deposition in both adipose and liver tissues. Compared with wild-type littermates (controls) on a high fat diet (HFD), Tg mice exhibited increased adiposity, decreased adipose inflammatory response, and improved insulin sensitivity. In a parallel pattern, HFD-fed Tg mice showed increased hepatic steatosis, decreased liver inflammatory response, and improved liver insulin sensitivity compared with controls. In both adipose and liver tissues, increased fat deposition was associated with lipid profile alterations characterized by an increase in palmitoleate. Additionally, plasma lipid profiles also displayed an increase in palmitoleate in HFD-Tg mice compared with controls. In cultured 3T3-L1 adipocytes, overexpression of PFKFB3/iPFK2 recapitulated metabolic and inflammatory changes observed in adipose tissue of Tg mice. Upon treatment with conditioned medium from iPFK2-overexpressing adipocytes, mouse primary hepatocytes displayed metabolic and inflammatory responses that were similar to those observed in livers of Tg mice. Together, these data demonstrate a unique role for PFKFB3/iPFK2 in adipocytes with regard to diet-induced inflammatory responses in both adipose and liver tissues.  相似文献   
63.
ABSTRACT: BACKGROUND: Studies suggested that microRNAs influence cellular activities in the uterus including cell differentiation and embryo implantation. In assisted reproduction cycles, luteal phase support, given to improve endometrial characteristics and to facilitate the implantation process, has been a standard practice. The effect of different types of luteal phase support using steroid hormones in relation to endometrial miRNA profiles during the peri-implantation period has not seen described. This study was designed to evaluate the expression of miRNAs during the luteal phase following controlled ovarian stimulation for IVF and the influence of different luteal phase support protocols on miRNA profiles. METHODS: The study was approved by the Johns Hopkins Hospital Institutional Review Board. Endometrial biopsies were obtained on the day of oocyte retrieval from 9 oocyte donors (group I). An additional endometrial biopsy was obtained 3-5 days later (Group II) after the donors were randomized into three groups. Group IIa had no luteal-phase support, group IIb had luteal support with micronized progesterone (P), and Group IIc had luteal support with progesterone plus 17-beta-estradiol (P+E). Total RNA was isolated and microarray analysis was performed using an Illumina miRNA expression panel. RESULTS: A total of 526 miRNAs were identified. Out of those, 216 miRNAs were differentially regulated (p<0.05) between the comparison groups. As compared to the day of retrieval, 19, 11 and 6 miRNAs were differentially regulated more than 2 fold in the groups of no support, in the P support only, and in the P+E support respectively, 3-5 days after retrieval. During the peri-implantation period (3-5 days after retrieval) the expression of 33 and 6 miRNAs increased, while the expression of 3 and 0 miRNAs decreased, in the P alone and in the P+E group respectively as compared to the no steroid supplementation group. CONCLUSION: Luteal support following COS has a profound influence on miRNA profiles. Up or down regulation of miRNAs after P or P+E support suggest a role(s) of luteal support in the peri-implantation uterus in IVF cycles through the regulation of associated target genes.  相似文献   
64.
65.
Pemphigus vulgaris (PV) is an Ab-mediated autoimmune blistering disease of mucotaneous surfaces. Over 95% of the patients with PV express DR4 or DRw6, and the disease is characterized by the presence of autoantibodies directed against desmoglein 3 (Dsg 3), a protein expressed on keratinocytes. An appropriate animal model is required to understand immunoregulation and to address the role of immunogenetic components in the production of pathogenic Abs that are characteristic of PV. Therefore, we turned to the development of a mouse model. Four strains of female mice (BALB/c, DBA/1, SJL/J, and HRS/J) were screened for their ability to produce pathogenic anti-Dsg 3 Abs. We demonstrated that only BALB/c mice immunized with a full-length Dsg 3 can produce pathogenic Abs capable of causing acantholysis of human foreskin in culture and blistering in neonatal mice. This observation suggested that either H-2d or the BALB background contains the immunogenetic makeup necessary for the production of pathogenic anti-Dsg 3 Abs. No correlation was noted between a given isotype and the pathogenic potential of autoantibodies from different strains of mice. Similarly, the pattern of reactivity of Abs with a panel of 46 synthetic peptides that span the entire Dsg 3 failed to reveal any association between binding specificity and the pathogenic potential, and suggested that pathogenic Abs might recognize conformational epitopes. Moreover, our studies showed that the epitopes recognized by pathogenic Abs are contained within the extracellular Dsg 3.  相似文献   
66.
Glycerol-3-phosphate acyltransferase-1 is the first rate limiting step in de novo glycerophospholipid synthesis. We have previously demonstrated that GPAT-1 deletion can significantly alter T cell function resulting in a T cell phenotype similar to that seen in aging. Recent studies have suggested that changes in the metabolic profile of T cells are responsible for defining specific effector functions and T cell subsets. Therefore, we determined whether T cell dysfunction in GPAT-1 −/− CD4+ T cells could be explained by changes in cellular metabolism. We show here for the first time that GPAT-1 −/− CD4+ T cells exhibit several key metabolic defects. Striking decreases in both the oxygen consumption rate (OCR) and the extracellular acidification rate (ECAR) were observed in GPAT-1 −/− CD4+ T cells following CD3/CD28 stimulation indicating an inherent cellular defect in energy production. In addition, the spare respiratory capacity (SRC) of GPAT-1 −/− CD4 + T cells, a key indicator of their ability to cope with mitochondrial stress was significantly decreased. We also observed a significant reduction in mitochondrial membrane potential in GPAT-1 −/− CD4+ T cells compared to their WT counterparts, indicating that GPAT-1 deficiency results in altered or dysfunctional mitochondria. These data demonstrate that deletion of GPAT-1 can dramatically alter total cellular metabolism under conditions of increased energy demand. Furthermore, altered metabolic response following stimulation may be the defining mechanism underlying T cell dysfunction in GPAT-1 −/− CD4+ T cells. Taken together, these results indicate that GPAT-1 is essential for the response to the increased metabolic demands associated with T cell activation.  相似文献   
67.

Background

The chemiluminescent microparticle immunoassay (CMIA) is widely used for the quantitative determination of B-type natriuretic peptide (BNP) in human ethylenediaminetetraacetic acid plasma. Rheumatoid factor (RF) is usually thought to result in a positive interference in immunoassays, but it is not clear whether its presence in plasma can lead to interferences in the CMIA of BNP.

Methods

The estimation of BNP recovery was carried out by diluting high-concentration BNP samples with RF-positive or RF-negative plasma at a ratio of 1∶9. The diluted samples were then tested using the ARCHITECT i2000 System and ARCHITECT BNP Reagent Kits and the recovery was then calculated.

Results

When the RF level ranged from 48 to 1420 IU/mL, the average recovery of BNP was 79.29% and 91.61% in the RF-positive and RF-negative plasma samples, respectively, and was thus significantly lower in the group of RF-positive plasma samples than in the group of RF-negative plasma samples. At a dilution of 1∶16, the measured BNP level increased by >36% in six of the seven RF-positive plasma samples. The recovery of BNP increased significantly in the RF-positive plasma samples after pretreatment with IgG-sensitive latex particles. In addition, The BNP recovery was not significantly related to the plasma RF at concentrations ranging from 48 to 2720 IU/mL.

Conclusions

Measurement of BNP by CMIA is susceptible to interference from RF leading to predominantly (but not exclusively) lower results. Pretreatment of samples with blocking reagents is advisable prior to the initiation of denying patient''s necessary treatment.  相似文献   
68.
Muscle regeneration involves the activation of satellite cells, is regulated at the genetic and epigenetic levels, and is strongly influenced by gene activation and environmental conditions. The aim of this study was to determine whether the overexpression of mIGF-1 can modify functional features of satellite cells during the differentiation process, particularly in relation to modifications of intracellular Ca2+ handling.Satellite cells were isolated from wild-type and MLC/mIGF-1 transgenic mice. The cells were differentiated in vitro, and morphological analyses, intracellular Ca2+ measurements, and ionic current recordings were performed.mIGF-1 overexpression accelerates satellite cell differentiation and promotes myotube hypertrophy. In addition, mIGF-1 overexpression-induced potentiation of myogenesis triggers both quantitative and qualitative changes to the control of intracellular Ca2+ handling. In particular, the differentiated MLC/mIGF-1 transgenic myotubes have reduced velocity and amplitude of intracellular Ca2+ increases after stimulation with caffeine, KCl and acetylcholine. This appears to be due, at least in part, to changes in the physico-chemical state of the sarcolemma (increased membrane lipid oxidation, increased output currents) and to increased expression of dihydropyridine voltage-operated Ca2+ channels. Interestingly, extracellular ATP and GTP evoke intracellular Ca2+ mobilization to greater extents in the MLC/mIGF-1 transgenic satellite cells, compared to the wild-type cells.These data suggest that these MLC/mIGF-1 transgenic satellite cells are more sensitive to trophic stimuli, which can potentiate the effects of mIGF-1 on the myogenic programme.  相似文献   
69.
70.
Phycobilisomes (PBSs) are light-harvesting antennae that transfer energy to photosynthetic reaction centers in cyanobacteria and red algae. PBSs are supermolecular complexes composed of phycobiliproteins (PBPs) that bear chromophores for energy absorption and linker proteins. Although the structures of some individual components have been determined using crystallography, the three-dimensional structure of an entire PBS complex, which is critical for understanding the energy transfer mechanism, remains unknown. Here, we report the structures of an intact PBS and a PBS in complex with photosystem II (PSII) from Anabaena sp. strain PCC 7120 using single-particle electron microscopy in combination with biochemical and molecular analyses. In the PBS structure, all PBP trimers and the conserved linker protein domains were unambiguously located, and the global distribution of all chromophores was determined. We provide evidence that ApcE and ApcF are critical for the formation of a protrusion at the bottom of PBS, which plays an important role in mediating PBS interaction with PSII. Our results provide insights into the molecular architecture of an intact PBS at different assembly levels and provide the basis for understanding how the light energy absorbed by PBS is transferred to PSII.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号