首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   14篇
  国内免费   21篇
  2023年   6篇
  2022年   8篇
  2021年   6篇
  2020年   2篇
  2019年   6篇
  2018年   9篇
  2017年   6篇
  2016年   4篇
  2015年   14篇
  2014年   13篇
  2013年   16篇
  2012年   20篇
  2011年   7篇
  2010年   7篇
  2009年   6篇
  2008年   6篇
  2007年   12篇
  2006年   3篇
  2005年   6篇
  2004年   4篇
  2003年   6篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
排序方式: 共有193条查询结果,搜索用时 31 毫秒
111.
高等植物细胞含有复杂的内膜系统,通过其特有的膜泡运输机制来完成细胞内和细胞间的物质交流。膜泡运输主要包括运输囊泡的出芽、定向移动、拴留和膜融合4个过程。这4个过程受到许多因子的调控,如Coat、SM、Tether、SNARE和Rab蛋白等,其中SNARE因子在膜融合过程中发挥重要功能。SNARE因子是小分子跨膜蛋白,分为定位于运输囊泡上的v-SNARE和定位于靶位膜上的t-SNARE,两类SNARE结合形成SNARE复合体,促进膜融合的发生。SNARE蛋白在调控植物体生长发育以及对外界环境响应等生理过程中起重要作用。该文对模式植物拟南芥(Arabidopsis thaliana)SNARE因子的最新细胞内定位和功能分析等研究进展进行了概述。  相似文献   
112.
Transglutaminase 2 knockout (TGase2(-/-)) mice show significantly reduced inflammation with decreased myofibroblasts in a unilateral ureteral obstruction (UUO) model, but the mechanism remains to be clarified. Nuclear factor-κB (NF-κB) activation plays a major role in the progression of inflammation in an obstructive nephropathy model. However, the key factors extending the duration of NF-κB activation in UUO are not known. In several inflammatory diseases, we and others recently found that TGase 2 plays a key role in extending NF-κB activation, which contributes to the pathogenesis of disease. In the current study, we found that NF-κB activity in mouse embryogenic fibroblasts (MEFs) from TGase2(-/-) mice remained at the control level while the NF-κB activity of wild-type (WT) MEFs was highly increased under hypoxic stress. Using the obstructive nephropathy model, we found that NF-κB activity remained at the control level in TGase2(-/-) mouse kidney tissues, as measured by COX-2 expression, but was highly increased in WT tissues. We conclude that TGase 2 gene ablation reduces the duration of NF-κB activation in ischemic injury.  相似文献   
113.
General and cell-type specific mechanisms target TRPP2/PKD-2 to cilia   总被引:4,自引:0,他引:4  
Ciliary localization of the transient receptor potential polycystin 2 channel (TRPP2/PKD-2) is evolutionarily conserved, but how TRPP2 is targeted to cilia is not known. In this study, we characterize the motility and localization of PKD-2, a TRPP2 homolog, in C. elegans sensory neurons. We demonstrate that GFP-tagged PKD-2 moves bidirectionally in the dendritic compartment. Furthermore, we show a requirement for different molecules in regulating the ciliary localization of PKD-2. PKD-2 is directed to moving dendritic particles by the UNC-101/adaptor protein 1 (AP-1) complex. When expressed in non-native neurons, PKD-2 remains in cell bodies and is not observed in dendrites or cilia, indicating that cell-type specific factors are required for directing PKD-2 to the dendrite. PKD-2 stabilization in cilia and cell bodies requires LOV-1, a functional partner and a TRPP1 homolog. In lov-1 mutants, PKD-2 is greatly reduced in cilia and forms abnormal aggregates in neuronal cell bodies. Intraflagellar transport (IFT) is not essential for PKD-2 dendritic motility or access to the cilium, but may regulate PKD-2 ciliary abundance. We propose that both general and cell-type-specific factors govern TRPP2/PKD-2 subcellular distribution by forming at least two steps involving somatodendritic and ciliary sorting decisions.  相似文献   
114.
115.
The 1,815,783-bp genome of a serotype M49 strain of Streptococcus pyogenes (group A streptococcus [GAS]), strain NZ131, has been determined. This GAS strain (FCT type 3; emm pattern E), originally isolated from a case of acute post-streptococcal glomerulonephritis, is unusually competent for electrotransformation and has been used extensively as a model organism for both basic genetic and pathogenesis investigations. As with the previously sequenced S. pyogenes genomes, three unique prophages are a major source of genetic diversity. Two clustered regularly interspaced short palindromic repeat (CRISPR) regions were present in the genome, providing genetic information on previous prophage encounters. A unique cluster of genes was found in the pathogenicity island-like emm region that included a novel Nudix hydrolase, and, further, this cluster appears to be specific for serotype M49 and M82 strains. Nudix hydrolases eliminate potentially hazardous materials or prevent the unbalanced accumulation of normal metabolites; in bacteria, these enzymes may play a role in host cell invasion. Since M49 S. pyogenes strains have been known to be associated with skin infections, the Nudix hydrolase and its associated genes may have a role in facilitating survival in an environment that is more variable and unpredictable than the uniform warmth and moisture of the throat. The genome of NZ131 continues to shed light upon the evolutionary history of this human pathogen. Apparent horizontal transfer of genetic material has led to the existence of highly variable virulence-associated regions that are marked by multiple rearrangements and genetic diversification while other regions, even those associated with virulence, vary little between genomes. The genome regions that encode surface gene products that will interact with host targets or aid in immune avoidance are the ones that display the most sequence diversity. Thus, while natural selection favors stability in much of the genome, it favors diversity in these regions.  相似文献   
116.
An antimalarial medicinal plant Picrorhiza scrophulariiflora was chemically investigated as part of our ongoing research in traditional chinese medicines (TCM). Mass directed fractionation of the active part of the crude extract led to the isolation of ten main components, three new compounds (13) and seven known compounds (410). Compound 10 inhibited the growth of the Plasmodium falciparum 3D7 malarial parasite line, with an IC50 value of 8.3 μM. This compound accounted for ~95% of P. falciparum growth inhibitory activity in the crude extract confirming, for this TCM, that a single compound was responsible for the antimalarial activity.  相似文献   
117.
Background aimsThe purpose of this study was to observe the outcome of co-transfusion of umbilical cord multipotent stromal cells (UC-MSC) and allogeneic hematopoietic stem cells in the treatment of heavily-transfused patients with severe aplastic anemia.MethodsOf the 22 patients, eight cases received haploidentical hematopoietic stem cells from granulocyte colony-stimulating factor–primed bone marrow and peripheral blood grafts; the other patients received granulocyte colony-stimulating factor–mobilized peripheral blood grafts from human leukocyte antigen–matched related (six cases) and unrelated donors (eight cases). MSCs were intravenously infused at a mean dose of 1.2 × 106/ kg (range, 0.27–2.5 × 106/kg). Fludarabine-based conditioning was conducted, and graft-versus-host disease prophylaxis containing cyclosporine A, methotrexate and mycophenolate mofetil with or without addition of anti-CD25 monoclonal antibody was performed. Hematopoietic engraftment, the occurrence of graft-versus-host disease (GVHD) and infections and overall survival were documented.ResultsAll patients had rapid engraftment; mean time for neutrophil and platelet recovery was 13.95 d and 20.27 d, respectively. No acute toxicity associated with UC-MSC transfusion was observed. Acute GVHD developed in seven cases (grade I–II), and none had development of chronic GVHD. Cytomegalovirus reactivation was observed in 11 cases. One patient died of pulmonary complication 6 months after transplantation. Twenty-one patients are currently alive, at a median follow-up of 15 months; they are transfusion-independent and reached full donor chimerism at the time of reporting.ConclusionsUC-MSC infusion might be an alternative option to promote hematopoietic engraftment and reduce the occurrence of GHVD in hematopoietic stem cell transplantation in the treatment of heavily transfused patients with severe aplastic anemia.  相似文献   
118.

Purpose

To develop and characterize a mouse model with intraocular pressure (IOP) elevation after laser photocoagulation on the trabecular meshwork (TM), which may serve as a model to investigate the potential of stem cell-based therapies for glaucoma.

Methods

IOP was measured in 281 adult C57BL/6 mice to determine normal IOP range. IOP elevation was induced unilaterally in 50 adult mice, by targeting the TM through the limbus with a 532-nm diode laser. IOP was measured up to 24 weeks post-treatment. The optic nerve damage was detected by electroretinography and assessed by semiautomatic counting of optic nerve axons. Effects of laser treatment on the TM were evaluated by histology, immunofluorescence staining, optical coherence tomography (OCT) and transmission electron microscopy (TEM).

Results

The average IOP of C57BL/6 mice was 14.5±2.6 mmHg (Mean ±SD). After laser treatment, IOP averaged above 20 mmHg throughout the follow-up period of 24 weeks. At 24 weeks, 57% of treated eyes had elevated IOP with the mean IOP of 22.5±2.5 mmHg (Mean ±SED). The difference of average axon count (59.0%) between laser treated and untreated eyes was statistically significant. Photopic negative response (PhNR) by electroretinography was significantly decreased. CD45+ inflammatory cells invaded the TM within 1 week. The expression of SPARC was increased in the TM from 1 to 12 weeks. Histology showed the anterior chamber angle open after laser treatment. OCT indicated that most of the eyes with laser treatment had no synechia in the anterior chamber angles. TEM demonstrated disorganized and compacted extracellular matrix in the TM.

Conclusions

An experimental murine ocular hypertension model with an open angle and optic nerve axon loss was produced with laser photocoagulation, which could be used to investigate stem cell-based therapies for restoration of the outflow pathway integrity for ocular hypertension or glaucoma.  相似文献   
119.
Pyruvate dehydrogenase kinase (PDK) can regulate the catalytic activity of pyruvate decarboxylation oxidation via the mitochondrial pyruvate dehydrogenase complex, and it further links glycolysis with the tricarboxylic acid cycle and ATP generation. This review seeks to elucidate the regulation of PDK activity in different species, mainly mammals, and the role of PDK inhibitors in preventing increased blood glucose, reducing injury caused by myocardial ischemia, and inducing apoptosis of tumor cells. Regulations of PDKs expression or activity represent a very promising approach for treatment of metabolic diseases including diabetes, heart failure, and cancer. The future research and development could be more focused on the biochemical understanding of the diseases, which would help understand the cellular energy metabolism and its regulation by pharmacological effectors of PDKs.  相似文献   
120.
Liu  Zifeng  Zhang  Guiling  Chen  Jing  Tong  Jingjing  Wang  Hongmin  Chen  Jing  Yang  Dong  Hu  Jinhua 《Molecular biology reports》2022,49(9):8715-8725
Background

Presently, liver transplantation is the only treatment strategy for liver failure (LF). Although granulocyte-colony stimulating factor (G-CSF) exhibits protective functions in LF, it is not clear whether it directly affects the liver cells.

Methods and Results

We established an injured liver cell model and observed that G-CSF treatment promoted cell viability and enhanced Ki67 and VEGF-A expression. Thereafter, human umbilical vein endothelial cells (HUVECs) were cultured in a conditioned medium collected from the G-CSF-treated injured liver cells. HUVECs’ proliferation and tubule formation were promoted. Furthermore, in an injured liver mouse model, confirmed via haematoxylin–eosin staining, we evaluated serum alanine aminotransferase activity, Ki67 expression, and microvessel density (MVD). G-CSF treatment significantly relieved liver injury, upregulated Ki67 expression, and enhanced MVD in the injured mouse liver tissue. Additionally, AKT and ERK signal targets were explored, and it was demonstrated that the effects of G-CSF on injured liver cells were mediated through the AKT and ERK signalling pathways.

Conclusions

G-CSF promotes injured liver viability and angiogenesis by directly affecting injured liver cells via the AKT and ERK signalling pathways. These findings improve our understanding of the role of G-CSF in recovery from LF.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号