首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12891篇
  免费   1283篇
  国内免费   1959篇
  2024年   49篇
  2023年   225篇
  2022年   523篇
  2021年   892篇
  2020年   636篇
  2019年   784篇
  2018年   687篇
  2017年   489篇
  2016年   630篇
  2015年   904篇
  2014年   1090篇
  2013年   1066篇
  2012年   1246篇
  2011年   1179篇
  2010年   718篇
  2009年   630篇
  2008年   704篇
  2007年   588篇
  2006年   501篇
  2005年   451篇
  2004年   436篇
  2003年   388篇
  2002年   319篇
  2001年   196篇
  2000年   181篇
  1999年   136篇
  1998年   98篇
  1997年   68篇
  1996年   54篇
  1995年   50篇
  1994年   39篇
  1993年   42篇
  1992年   24篇
  1991年   16篇
  1990年   22篇
  1989年   20篇
  1988年   12篇
  1987年   8篇
  1986年   6篇
  1985年   8篇
  1984年   3篇
  1983年   4篇
  1982年   6篇
  1981年   2篇
  1980年   2篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
To investigate the role of microRNAs in the development of chemoresistance and related epithelial–mesenchymal transition (EMT), we examined the effect of miR-489 in adriamycin (ADM)-resistant human breast cancer cells (MCF-7/ADM). MiR-489 was significantly suppressed in MCF-7/ADM cells compared with chemosensitive parental control MCF-7/WT cells. Forced-expression of miR-489 reversed chemoresistance. Furthermore, Smad3 was identified as the target of miR-489 and is highly expressed in MCF-7/ADM cells. Forced expression of miR-489 both inhibited Smad3 expression and Smad3 related EMT properties. Finally, the interactions between Smad3, miR-489 and EMT were confirmed in chemoresistant tumor xenografts and clinical samples, indicating their potential implication for treatment of chemoresistance.  相似文献   
992.
993.
To prevent lake degradation, water level management has been a major focus of research in the past several decades. There are, however, some shortcomings in the traditional studies, and the protection of entire ecosystems is difficult to achieve in practice. In this paper, the framework of a new method for determining ecosystem-based water level regimes (WLRs) for lake protection is proposed. First, historical WLRs are divided into several sub-stages. Then, ecosystem statuses corresponding to different WLRs are quantified and compared. Finally, parameters of optimal and acceptable WLRs are used to determine water level management goals. The proposed method was applied to Baiyangdian Lake, the largest shallow lake in the North China Plain, to test its effectiveness. Results showed that to protect the ecosystem at the optimal status, 50% of the parameter values should fall within the range of the 25th and 75th percentiles of Stage I; and to protect the ecosystem from reverse succession, 50% of the water level parameter values should fall within the range of the 25th and 75th percentiles of Stage II. This method takes ecosystem status into account, and has high practicability in water resources management.  相似文献   
994.
Matrix metalloproteinases (MMPs) are extracellular matrix (ECM) degrading enzymes and have complex and specific regulation networks. This includes activation interactions, where one MMP family member activates another. ECM degradation and MMP activation can be initiated by several different stimuli including changes in ECM mechanical properties or intracellular contractility. These mechanical stimuli are known enhancers of metastatic potential. MMP-14 facilitates local ECM degradation and is well known as a major mediator of cell migration, angiogenesis and invasion. Recently, function blocking antibodies have been developed to specifically block MMP-14, providing a useful tool for research as well as therapeutic applications. Here we utilize a selective MMP-14 function blocking antibody to delineate the role of MMP-14 as an activator of other MMPs in response to changes in cellular contractility and ECM stiffness. Inhibition using function blocking antibodies reveals that MMP-14 activates soluble MMPs like MMP-2 and -9 under various mechanical stimuli in the pancreatic cancer cell line, Panc-1. In addition, inhibition of MMP-14 abates Panc-1 cell extension into 3D gels to levels seen with non-specific pan-MMP inhibitors at higher concentrations. This strengthens the case for MMP function blocking antibodies as more potent and specific MMP inhibition therapeutics.  相似文献   
995.
Cyclic 3′5′ adenosine monophosphate (cAMP)-dependent-protein kinase (PKA) signaling is a fundamental regulatory pathway for mediating cellular responses to hormonal stimuli. The pathway is activated by high-affinity association of cAMP with the regulatory subunit of PKA and signal termination is achieved upon cAMP dissociation from PKA. Although steps in the activation phase are well understood, little is known on how signal termination/resetting occurs. Due to the high affinity of cAMP to PKA (KD ∼ low nM), bound cAMP does not readily dissociate from PKA, thus begging the question of how tightly bound cAMP is released from PKA to reset its signaling state to respond to subsequent stimuli. It has been recently shown that phosphodiesterases (PDEs) can catalyze dissociation of bound cAMP and thereby play an active role in cAMP signal desensitization/termination. This is achieved through direct interactions with the regulatory subunit of PKA, thereby facilitating cAMP dissociation and hydrolysis. In this study, we have mapped direct interactions between a specific cyclic nucleotide phosphodiesterase (PDE8A) and a PKA regulatory subunit (RIα isoform) in mammalian cAMP signaling, by a combination of amide hydrogen/deuterium exchange mass spectrometry, peptide array, and computational docking. The interaction interface of the PDE8A:RIα complex, probed by peptide array and hydrogen/deuterium exchange mass spectrometry, brings together regions spanning the phosphodiesterase active site and cAMP-binding sites of RIα. Computational docking combined with amide hydrogen/deuterium exchange mass spectrometry provided a model for parallel dissociation of bound cAMP from the two tandem cAMP-binding domains of RIα. Active site coupling suggests a role for substrate channeling in the PDE-dependent dissociation and hydrolysis of cAMP bound to PKA. This is the first instance, to our knowledge, of PDEs directly interacting with a cAMP-receptor protein in a mammalian system, and highlights an entirely new class of binding partners for RIα. This study also highlights applications of structural mass spectrometry combined with computational docking for mapping dynamics in transient signaling protein complexes. Together, these results present a novel and critical role for phosphodiesterases in moderating local concentrations of cAMP in microdomains and signal resetting.  相似文献   
996.
In this study, the microwave rewarming process of cryopreserved samples with embedded superparamagnetic (SPM) nanoparticles was numerically simulated. The Finite Element Method (FEM) was used to calculate the coupling of the electromagnetic field and the temperature field in a microwave rewarming system composed of a cylindrical resonant cavity, an antenna source, and a frozen sample phantom with temperature-dependent properties. The heat generated by the sample and the nanoparticles inside the electromagnetic field of the microwave cavity was calculated. The dielectric properties of the biological tissues were approximated using the Debye model, which is applicable at different temperatures. The numerical results showed that, during the rewarming process of the sample phantom without nanoparticles, the rewarming rate was 29.45 °C/min and the maximum temperature gradient in the sample was 3.58 °C/mm. If nanoparticles were embedded in the sample, and the cavity power was unchanged, the rewarming rate was 47.76 °C/min and the maximum temperature gradient in the sample was 1.64 °C/mm. In the presence of SPM nanoparticles, the rewarming rate and the maximum temperature gradient were able to reach 20.73 °C/min and 0.68 °C/mm at the end of the rewarming under the optimized cavity power setting, respectively. The ability to change these temperature behaviors may prevent devitrification and would greatly diminish thermal stress during the rewarming process. The results indicate that the rewarming rate and the uniformity of temperature distribution are increased by nanoparticles. This could be because nanoparticles generated heat in the sample homogeneously and the time-dependent parameters of the sample improved after nanoparticles were homogeneously embedded within it. We were thus able to estimate the positive effect of SPM nanoparticles on microwave rewarming of cryopreserved samples.  相似文献   
997.
The vertebrate heart undergoes early complex morphologic events in order to develop key cardiac structures that regulate its overall function (Fahed et al., 2013). Although many genetic factors that participate in patterning the heart have been elucidated (Tu and Chi, 2012), the cellular events that drive cardiac morphogenesis have been less clear. From a chemical genetic screen to identify cellular pathways that control cardiac morphogenesis in zebrafish, we observed that inhibition of the Rho signaling pathways resulted in failure to form the atrioventricular canal and loop the linear heart tube. To identify specific Rho proteins that may regulate this process, we analyzed cardiac expression profiling data and discovered that RhoU was expressed at the atrioventricular canal during the time when it forms. Loss of RhoU function recapitulated the atrioventricular canal and cardiac looping defects observed in the ROCK inhibitor treated zebrafish. Similar to its family member RhoV/Chp (Tay et al., 2010), we discovered that RhoU regulates the cell junctions between cardiomyocytes through the Arhgef7b/Pak kinase pathway in order to guide atrioventricular canal development and cardiac looping. Inhibition of this pathway resulted in similar underlying cardiac defects and conversely, overexpression of a PAK kinase was able to rescue the loss of RhoU cardiac defect. Finally, we found that Wnt signaling, which has been implicated in atrioventricular canal development (Verhoeven et al., 2011), may regulate the expression of RhoU at the atrioventricular canal. Overall, these findings reveal a cardiac developmental pathway involving RhoU/Arhgef7b/Pak signaling, which helps coordinate cell junction formation between atrioventricular cardiomyocytes to promote cell adhesiveness and cell shapes during cardiac morphogenesis. Failure to properly form these cell adhesions during cardiac development may lead to structural heart defects and mechanistically account for the cellular events that occur in certain human congenital heart diseases.  相似文献   
998.
Substrate-directed screening was carried out to find bacteria that could deacylate O-acetylated mandelic acid from environmental samples. From more than 200 soil isolates, we identified for the first time that Pseudomonas sp. ECU1011 biocatalytically deacylated (S)-α-acetoxyphenylacetic acid with high enantioselectivity (E > 200), yielding (S)-mandelic acid with 98.1% enantiomeric excess (ee) at a 45.5% conversion rate. The catalytic deacylation of (S)-α-acetoxyphenylacetic acid by the resting cell was optimized using a single-factor method to yield temperature and pH optima of 30°C and 6.5, respectively. These optima help to reduce the nonselective spontaneous hydrolysis of the racemic substrate. It was found that substrate concentrations up to 60 mM could be used. 2-Propanol was used as a moderate cosolvent to help the substrate disperse in the aqueous phase. Under optimized reaction conditions, the ee of the residual (R)-α-acetoxyphenylacetic acid could be improved further, to greater than 99%, at a 60% conversion rate. Furthermore, using this newly isolated strain of Pseudomonas sp. ECU1011, three kinds of optically pure analogs of (S)-mandelic acid and (R)-α-acetoxyphenylacetic acid were successfully prepared at high enantiomeric purity.  相似文献   
999.
Earlier studies have established the importance of five disulfide bridges (DBs) in Aspergillus niger phytase. In this study, the relative importance of each of the individual disulfide bridge is determined by its removal by site-directed mutagenesis of specific cysteines in the cloned A. niger phyA gene. Individually, these mutant phytases were expressed in a Pichia expression system and their product purified and characterized. The removal of disulfide bridge 2 yielded a mutant phytase with a complete loss of catalytic activity. The other disulfide mutants displayed a broad array of altered catalytic properties including a lower optimum temperature from 58°C to 53°C for bridge number 1, 37°C for bridge number 3 and 4, and 42°C for bridge number 5. The pH versus activity profile was also modified in the DB mutants. The pH profile of the wild-type phytase was modified by the DB mutations. In bridge number 1, 3, and 4, the second peak at pH 2.5 was abolished, and in bridge number 5, the peak at pH 5.0 was abolished completely leaving only the pH 2.5. While the K m was not affected drastically, the turnover number was lowered significantly in bridge number 3, 4, and 5.  相似文献   
1000.
Anti-apoptosis plays an important role in tumour formation and development. Survivin is a member of the inhibitor of apoptosis (IAP) family, which is a target for anti-cancer drug exploitation was replaced as development. We investigated the role of the homo dominant-negative mutant Survivin-T34A in suppressing human lung adenocarcinomas (A549). The anti-tumour activity of HSurvivinT34A plasmid was evaluated in the A549 cell line and nude mice bearing A549 subcutaneous tumours. Low-dose systemic administration was continuously used. The HSurvivinT34A plasmid (5 µg/one) complexed with a cationic liposome (DOTAP/Chol) significantly inhibited tumour growth in our model. We observed microvessel density degradation by CD31 immunohistochemistry and apoptotic cell increase by TUNEL assay, PI staining and flow cytometric analysis in the treated group. The present findings suggest that the HSurvivinT34A plasmid complexed with a cationic liposome may provide an effective approach to inhibit the growth of human lung adenocarcinomas in vitro and in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号