首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19741篇
  免费   1444篇
  国内免费   1442篇
  22627篇
  2024年   53篇
  2023年   291篇
  2022年   635篇
  2021年   1073篇
  2020年   715篇
  2019年   899篇
  2018年   809篇
  2017年   616篇
  2016年   897篇
  2015年   1268篇
  2014年   1487篇
  2013年   1535篇
  2012年   1801篇
  2011年   1567篇
  2010年   975篇
  2009年   845篇
  2008年   976篇
  2007年   792篇
  2006年   753篇
  2005年   599篇
  2004年   537篇
  2003年   490篇
  2002年   414篇
  2001年   376篇
  2000年   345篇
  1999年   314篇
  1998年   207篇
  1997年   193篇
  1996年   177篇
  1995年   159篇
  1994年   116篇
  1993年   105篇
  1992年   136篇
  1991年   112篇
  1990年   99篇
  1989年   62篇
  1988年   49篇
  1987年   49篇
  1986年   25篇
  1985年   26篇
  1984年   16篇
  1983年   20篇
  1982年   4篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1972年   1篇
  1966年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Malleola tibetica, a new species from southeastern tropical Tibet, China, is described and illustrated. Morphologically, the new species is closely related to M. dentifera, but differs from it by having uniformly green leaves, flowers with entire lateral lobes of the lip and a basally thickened mid‐lobe, and a column that is densely cristaline‐papillose adaxially.  相似文献   
92.
93.
Lipopeptides secreted by bacteria attract interest because of their uses in biomedicine, biotechnology and food technology; however, harnessing their megasynthases (non-ribosomal peptide synthetases, NRPSs) has met with some difficulties in heterologous expression and crystallization. Here, we used similarity and phylogenetic analysis of NRPS sequences, including the fengycin and iturin family synthetases from Bacillus spp., and have developed a novel approach for delineating the length and boundaries of NRPS domains from Bacillus amyloliquefaciens strain Q-426. The sequences were further characterized (including specific residues and conserved motifs) that gave insight into the basis of the substrate specificity. Data from the prediction of the NRPS domains, obtained by the self-optimized prediction method with Alignment program, showed they are all structurally unstable, making it difficult to determine their crystal structures.  相似文献   
94.
Based on our previous research, four sulfated polysaccharide (sPSs) from Tremella and Condonpsis pilosula, sTPStp, sTPS70c, sCPPStp and sCPPS50c, were prepared and their effects on splenic lymphocytes proliferation in vitro and the immune response of ND vaccine in chicken were compared taking the unmodified polysaccharide (uPS) TPStp as control. The results showed that four sPSs could significantly or numerically stimulate splenic lymphocyte proliferation singly or synergistically with LPS in vitro, sTPS70c and sCPPStp demonstrated better effect; promote peripheral lymphocytes proliferation and enhance serum HI antibody titer in chickens vaccinated with ND vaccine, the actions of sPSs were stronger than that of uPS, and sTPS70c at medium dosage presented the best efficacy. These indicated that sulfation modification could improve the immune-enhancing activity of TPS and CPPS, sTPS70c possessed the strongest activity and would be expected as a component of new-type immunopotentiator.  相似文献   
95.
Zinc (Zn) is an essential micronutrient and cytoprotectant involved in preventing many types of epithelial-to-mesenchymal transition (EMT)-driven fibrosis in vivo. The zinc-transporter family SLC30A (ZnT) is a pivotal factor in the regulation of Zn homeostasis. However, its function in EMT in peritoneal mesothelial cells (PMCs) remains unknown. This study explored the regulation of zinc transporters and the role they play in cell EMT, particularly in rat peritoneal mesothelial cells (RPMCs), surrounding glucose concentrations and the molecular mechanism involved. The effects of high glucose (HG) on zinc transporter gene expression were measured in RPMCs by real-time PCR. We explored ZnT7 (Slc30A7): the effect of ZnT7 over-expression and siRNA-mediated knock-down on HG-induced EMT was investigated as well as the underlying molecular mechanisms. Over-expression of ZnT7 resulted in significantly inhibited HG-induced EMT in RPMCs, while inhibition of ZnT7 expression using a considerable siRNA-mediated knock-down of RPMCs increased the levels of EMT. Furthermore, over-expression of ZnT7 is accompanied by down-regulation of TGF-β/Smad pathway, phospho-Smad3,4 expression levels. The finding suggests that the zinc-transporting system in RPMCs is influenced by the exposure to HG. The ZnT7 may account for the inhibition of HG-induced EMT in RPMCs, likely through targeting TGF-β/Smad signaling.  相似文献   
96.
Two glutamate receptors, metabotropic glutamate receptor 5 (mGluR5), and ionotropic NMDA receptors (NMDAR), functionally interact with each other to regulate excitatory synaptic transmission in the mammalian brain. In exploring molecular mechanisms underlying their interactions, we found that Ca2+/calmodulin‐dependent protein kinase IIα (CaMKIIα) may play a central role. The synapse‐enriched CaMKIIα directly binds to the proximal region of intracellular C terminal tails of mGluR5 in vitro. This binding is state‐dependent: inactive CaMKIIα binds to mGluR5 at a high level whereas the active form of the kinase (following Ca2+/calmodulin binding and activation) loses its affinity for the receptor. Ca2+ also promotes calmodulin to bind to mGluR5 at a region overlapping with the CaMKIIα‐binding site, resulting in a competitive inhibition of CaMKIIα binding to mGluR5. In rat striatal neurons, inactive CaMKIIα constitutively binds to mGluR5. Activation of mGluR5 Ca2+‐dependently dissociates CaMKIIα from the receptor and simultaneously promotes CaMKIIα to bind to the adjacent NMDAR GluN2B subunit, which enables CaMKIIα to phosphorylate GluN2B at a CaMKIIα‐sensitive site. Together, the long intracellular C‐terminal tail of mGluR5 seems to serve as a scaffolding domain to recruit and store CaMKIIα within synapses. The mGluR5‐dependent Ca2+ transients differentially regulate CaMKIIα interactions with mGluR5 and GluN2B in striatal neurons, which may contribute to cross‐talk between the two receptors.

  相似文献   

97.
The NEDD8 protein and neddylation levels in cells are modulated by NUB1L or NUB1 through proteasomal degradation, but the underlying molecular mechanism is not well understood. Here, we report that NUB1L down-regulated the protein levels of NEDD8 and neddylation through specifically recognizing NEDD8 and P97/VCP. NUB1L directly interacted with NEDD8, but not with ubiquitin, on the key residue Asn-51 of NEDD8 and with P97/VCP on its positively charged VCP binding motif. In coordination with the P97-UFD1-NPL4 complex (P97UFD1/NPL4), NUB1L promotes transfer of NEDD8 to proteasome for degradation. This mechanism is also exemplified by the canonical neddylation of cullin 1 for SCF (SKP1-cullin1-F-box) ubiquitin E3 ligases that is exquisitely regulated by the turnover of NEDD8.  相似文献   
98.
Thrombosis in coronary or cerebral arteries is the major cause of morbidity and mortality worldwide. Diosgenin and total steroidal saponins extracted from the rhizome of Dioscorea zingiberensis C.H. Wright are demonstrated to have anti-thrombotic activity. However, few studies describe the anti-thrombotic activity of the diosgenyl saponin monomer. In the present study, a simple and convenient method for the preparation of a new disaccharide saponin, diosgenyl β-d-galactopyranosyl-(1  4)-β-d-glucopyranoside (3), is described. We evaluated the anti-thrombotic effects of diosgenin and four diosgenyl saponins by measuring the bleeding time; the results showed that compound 3 exhibits outstanding efficiency in prolonging the bleeding time. Furthermore, we assessed whether compound 3 could alter platelet aggregation in vitro and in vivo. In addition, activated partial thromboplastin time (APTT), thrombin time (TT), prothrombin time (PT), coagulation factors and protection rate in mice were measured to evaluate the anti-thrombotic effect of compound 3. The results show that compound 3 inhibited platelet aggregation, prolonged APTT, inhibited factor VIII activities in rats, and increased the protection rate in mice in a dose-dependent manner. Taken together, these findings suggested that diosgenyl saponins, especially compound 3, had anti-thrombotic activity. It may execute anti-thrombotic activity through inhibiting factor VIII activities and platelet aggregation.  相似文献   
99.
100.
Drought is one of the critical factors limiting reproductive yields of rice and other crops globally. However, little is known about the molecular mechanism underlying reproductive development under drought stress in rice. To explore the potential gene function for improving rice reproductive development under drought, a drought induced gene, Oryza sativa Drought-Induced LTP (OsDIL) encoding a lipid transfer protein, was identified from our microarray data and selected for further study. OsDIL was primarily expressed in the anther and mainly responsive to abiotic stresses, including drought, cold, NaCl, and stress-related plant hormone abscisic acid (ABA). Compared with wild type, the OsDIL-overexpressing transgenic rice plants were more tolerant to drought stress during vegetative development and showed less severe tapetal defects and fewer defective anther sacs when treated with drought at the reproductive stage. The expression levels of the drought-responsive genes RD22, SODA1, bZIP46 and POD, as well as the ABA synthetic gene ZEP1 were up-regulated in the OsDIL-overexpression lines but the ABA degradation gene ABAOX3 was down-regulated. Moreover, overexpression of OsDIL lessened the down-regulation by drought of anther developmental genes (OsC4, CYP704B2 and OsCP1), providing a mechanism supporting pollen fertility under drought. Overexpression of OsDIL significantly enhanced drought resistance in transgenic rice during reproductive development, while showing no phenotypic changes or yield penalty under normal conditions. Therefore, OsDIL is an excellent candidate gene for genetic improvement of crop yield in adaption to unfavorable environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号