全文获取类型
收费全文 | 22081篇 |
免费 | 1894篇 |
国内免费 | 1494篇 |
专业分类
25469篇 |
出版年
2024年 | 53篇 |
2023年 | 236篇 |
2022年 | 580篇 |
2021年 | 868篇 |
2020年 | 627篇 |
2019年 | 793篇 |
2018年 | 850篇 |
2017年 | 636篇 |
2016年 | 941篇 |
2015年 | 1415篇 |
2014年 | 1646篇 |
2013年 | 1722篇 |
2012年 | 2041篇 |
2011年 | 1955篇 |
2010年 | 1167篇 |
2009年 | 1112篇 |
2008年 | 1297篇 |
2007年 | 1173篇 |
2006年 | 1078篇 |
2005年 | 912篇 |
2004年 | 879篇 |
2003年 | 697篇 |
2002年 | 565篇 |
2001年 | 365篇 |
2000年 | 293篇 |
1999年 | 258篇 |
1998年 | 194篇 |
1997年 | 155篇 |
1996年 | 150篇 |
1995年 | 117篇 |
1994年 | 109篇 |
1993年 | 64篇 |
1992年 | 88篇 |
1991年 | 71篇 |
1990年 | 80篇 |
1989年 | 62篇 |
1988年 | 44篇 |
1987年 | 45篇 |
1986年 | 27篇 |
1985年 | 27篇 |
1984年 | 33篇 |
1983年 | 13篇 |
1982年 | 10篇 |
1981年 | 7篇 |
1980年 | 2篇 |
1978年 | 2篇 |
1967年 | 2篇 |
1964年 | 1篇 |
1962年 | 1篇 |
1950年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
During development, axons must integrate directional information encoded by multiple guidance cues and their receptors. Axon guidance receptors, such as UNC-40 (DCC) and SAX-3 (Robo), can function individually or combinatorially with other guidance receptors to regulate downstream effectors. However, little is known about the molecular mechanisms that mediate combinatorial guidance receptor signaling. Here, we show that UNC-40, SAX-3 and the SYD-1 RhoGAP-like protein function interdependently to regulate the MIG-2 (Rac) GTPase in the HSN axon of C. elegans. We find that SYD-1 mediates an UNC-6 (netrin) independent UNC-40 activity to promote ventral axon guidance. Genetic analysis suggests that SYD-1 function in axon guidance requires both UNC-40 and SAX-3 activity. Moreover, the cytoplasmic domains of UNC-40 and SAX-3 bind to SYD-1 and SYD-1 binds to and negatively regulates the MIG-2 (Rac) GTPase. We also find that the function of SYD-1 in axon guidance is mediated by its phylogenetically conserved C isoform, indicating that the role of SYD-1 in guidance is distinct from its previously described roles in synaptogenesis and axonal specification. Our observations reveal a molecular mechanism that can allow two guidance receptors to function interdependently to regulate a common downstream effector, providing a potential means for the integration of guidance signals. 相似文献
82.
Jang Hye Jin Choi Ji Yeon Kim Kangjoon Yong Seung Hyun Kim Yeon Wook Kim Song Yee Kim Eun Young Jung Ji Ye Kang Young Ae Park Moo Suk Kim Young Sam Cho Young-Jae Lee Sang Hoon 《Respiratory research》2021,22(1):1-9
IL-35 subunit EBI3 is up-regulated in pulmonary fibrosis tissues. In this study, we investigated the pathological role of EBI3 in pulmonary fibrosis and dissected the underlying molecular mechanism. Bleomycin-induced pulmonary fibrosis mouse model was established, and samples were performed gene expression analyses through RNAseq, qRT-PCR and Western blot. Wild type and EBI3 knockout mice were exposed to bleomycin to investigate the pathological role of IL-35, via lung function and gene expression analyses. Primary lung epithelial cells were used to dissect the regulatory mechanism of EBI3 on STAT1/STAT4 and STAT3. IL-35 was elevated in both human and mouse with pulmonary fibrosis. EBI3 knockdown aggravated the symptoms of pulmonary fibrosis in mice. EBI3 deficiency enhanced the expressions of fibrotic and extracellular matrix-associated genes. Mechanistically, IL-35 activated STAT1 and STAT4, which in turn suppressed DNA enrichment of STAT3 and inhibited the fibrosis process. IL-35 might be one of the potential therapeutic targets for bleomycin-induced pulmonary fibrosis. 相似文献
83.
Kristen M. Johansen Jrgen Johansen Kwang-Hyun Baek Ye Jin 《Journal of cellular biochemistry》1996,63(3):268-279
Little is known about what determines the nuclear matrix or how its reorganization is regulated during mitosis. In this study we report on a monoclonal antibody, mAb2A, which identifies a novel nuclear structure in Drosophila embryos which forms a diffuse meshwork at interphase but which undergoes a striking reorganization into a spindle-like structure during pro- and metaphase. Double labelings with α-tubulin and mAb2A antibodies demonstrate that the microtubules of the mitotic apparatus co-localize with this mAb2A labeled structure during metaphase, suggesting it may serve a role in microtubule spindle assembly and/or function during nuclear division. That the mAb2A-labeled nuclear structure is essential for cell division and/or maintenance of nuclear integrity was directly demonstrated by microinjection of mAb2A into early syncytial embryos which resulted in a disintegration of nuclear morphology and perturbation of mitosis. © 1996 Wiley-Liss, Inc. 相似文献
84.
85.
86.
Wenhui Zhao Xinmei Kang Shi Jin Changjie Lou 《Biochemical and biophysical research communications》2009,380(3):699-439
Acquired resistance to tamoxifen has become a serious obstacle in breast cancer treatment. The underlying mechanism responsible for this condition has not been completely elucidated. In this study, a tamoxifen-resistant (Tam-R) MCF-7 breast cancer cell line was developed to mimic the occurrence of acquired tamoxifen resistance as seen in clinical practice. Increased expression levels of HER1, HER2 and the estrogen receptor (ER)-AIB1 complex were found in tamoxifen-resistant cells. EGF stimulation and gefitinib inhibition experiments further demonstrated that HER1/HER2 signaling and AIB1 were involved in the proliferation of cells that had acquired Tam resistance. However, when AIB1 was silenced with AIB1-siRNA in Tam-R cells, the cell growth stimulated by the HER1/HER2 signaling pathway was significantly reduced, and the cells were again found to be inhibited by tamoxifen. These results suggest that the AIB1 protein could be a limiting factor in the HER1/HER2-mediated hormone-independent growth of Tam-R cells. Thus, AIB1 may be a new therapeutic target, and the removal of AIB1 may decrease the crosstalk between ER and the HER1/HER2 pathway, resulting in the restoration of tamoxifen sensitivity in tamoxifen-resistant cells. 相似文献
87.
Intracellular pH regulatory mechanism in human atrial myocardium: functional evidence for Na(+)/H(+) exchanger and Na(+)/HCO(3)(-) symporter 总被引:1,自引:0,他引:1
Loh SH Chen WH Chiang CH Tsai CS Lee GC Jin JS Cheng TH Chen JJ 《Journal of biomedical science》2002,9(3):198-205
Intracellular pH (pH(i)) exerts considerable influence on cardiac contractility and rhythm. Over the last few years, extensive progress has been made in understanding the system that controls pH(i) in animal cardiomyocytes. In addition to the housekeeping Na(+)-H(+) exchanger (NHE), the Na(+)-HCO(3)(-) symporter (NHS) has been demonstrated in animal cardiomyocytes as another acid extruder. However, whether the NHE and NHS functions exist in human atrial cardiomyocytes remains unclear. We therefore investigated the mechanism of pH(i) recovery from intracellular acidosis (induced by NH(4)Cl prepulse) using intracellular 2',7'-bis(2-carboxethyl)-5(6)-carboxy-fluorescein fluorescence in human atrial myocardium. In HEPES (nominally HCO(3)(-)-free) Tyrode solution, pH(i) recovery from induced intracellular acidosis could be blocked completely by 30 microM 3-methylsulfonyl-4-piperidinobenzoyl, guanidine hydrochloride (HOE 694), a specific NHE inhibitor, or by removing extracellular Na(+). In 3% CO(2)-HCO(3)(-) Tyrode solution, HOE 694 only slowed the pH(i) recovery, while addition of HOE 694 together with 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (an NHS inhibitor) or removal of extracellular Na(+) inhibited the acid extrusion entirely. Therefore, in the present study, we provided evidence that two acid extruders involved in acid extrusion in human atrial myocytes, one which is HCO(3)(-) independent and one which is HCO(3)(-) dependent, are mostly likely NHE and NHS, respectively. When we checked the percentage of contribution of these two carriers to pH(i) recovery following induced acidosis, we found that the activity of NHE increased steeply in the acid direction, while that of NHS did not change. Our present data indicate for the first time that two acid extruders, NHE and NHS, exist functionally and pH(i) dependently in human atrial cardiomyocytes. 相似文献
88.
大豆属Soja亚属种皮微形态特征的研究 总被引:1,自引:0,他引:1
采用扫描电镜对大豆属Soja亚属植物的种皮微形态特征进行了系统研究。结果表明,该亚属植物种皮微形态特征在种的水平上具有一定的分类学意义。 相似文献
89.
Han YW Aleyas AG George JA Kim SJ Kim HK Yoo DJ Kang SH Eo SK 《Immunology and cell biology》2009,87(1):91-99
The CC chemokine receptor 7 (CCR7) and cognate CCR7 ligands, CCL19 and CCL21, help establish microenvironments in lymphoid tissue that can facilitate encounters between naive T cells and mature dendritic cells (DCs). This study was conducted to determine if CCR7 ligands can augment the immunogenicity of a DNA vaccine that expresses glycoprotein B (gB) of the pseudorabies virus (PrV). The genetic co-transfer of CCR7 ligands along with a PrV DNA vaccine increased the levels of serum PrV-specific immunoglobulin (Ig) G by 2- to 2.5-fold. In addition, the level of PrV-specific IgG2a isotype was significantly enhanced by co-injection of CCR7 ligand DNA, which indicates that CCR7 ligand biases the humoral immunity toward the Th1-type pattern. The co-injection of CCR7 ligand DNA consistently enhanced the level of Th1-type cytokines (IL-2 and IFN-gamma) produced by stimulated immune cells when compared with a group that was vaccinated with the PrV DNA vaccine. Also, the genetic co-transfer of CCR7 ligand DNAs with PrV DNA vaccine provided prolonged survival against a virulent challenge by PrV. Moreover, the co-administration of CCR7 ligand DNA increased the number of mature DCs into the secondary lymphoid tissues, which appeared to enhance the proliferation of PrV-immune CD4(+) T cells. Taken together, these findings indicate that CCR7 ligands are an attractive adjuvant for a PrV DNA vaccine that can offer protective immunity against the PrV. 相似文献
90.
Young Jun Kim Kwang Pyo Kim Hae Jin Rhee Sudipto Das John D Rafter Youn Sang Oh Wonhwa Cho 《The Journal of biological chemistry》2002,277(11):9358-9365
Mammalian secretory phospholipases A(2) (sPLA(2)) have been implicated in cellular eicosanoid biosynthesis but the mechanism of their cellular action remains unknown. To elucidate the spatiotemporal dynamics of sPLA(2) mobilization and determine the site of its lipolytic action, we performed time-lapse confocal microscopic imaging of fluorescently labeled sPLA(2) acting on human embryonic kidney (HEK) 293 cells the membranes of which are labeled with a fluorogenic phospholipid, N-((6-(2,4-dinitrophenyl)amino)hexanoyl)-1-hexadecanoyl-2-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-sn-glycero-3-phosphoethanolamine. The Western blotting analysis of HEK293 cells treated with exogenous sPLA(2)s showed that not only the affinity for heparan sulfate proteoglycan but also other factors, such as sPLA(2) hydrolysis products or cytokines, are necessary for the internalization of sPLA(2) into HEK293 cells. Live cell imaging showed that the hydrolysis of fluorogenic phospholipids incorporated into HEK293 cell membranes was synchronized with the spatiotemporal dynamics of sPLA(2) internalization, detectable initially at the plasma membrane and then at the perinuclear region. Also, immunocytostaining showed that human group V sPLA(2) induced the translocation of 5-lipoxygenase to the nuclear envelope at which they were co-localized. Together, these studies provide the first experimental evidence that the internalized sPLA(2) acts on the nuclear envelope to provide arachidonate for other enzymes involved in the eicosanoid biosynthesis. 相似文献