首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6010篇
  免费   447篇
  国内免费   452篇
  2024年   12篇
  2023年   70篇
  2022年   165篇
  2021年   302篇
  2020年   211篇
  2019年   233篇
  2018年   230篇
  2017年   192篇
  2016年   293篇
  2015年   379篇
  2014年   460篇
  2013年   479篇
  2012年   523篇
  2011年   463篇
  2010年   289篇
  2009年   251篇
  2008年   313篇
  2007年   258篇
  2006年   201篇
  2005年   159篇
  2004年   151篇
  2003年   141篇
  2002年   128篇
  2001年   109篇
  2000年   94篇
  1999年   97篇
  1998年   65篇
  1997年   63篇
  1996年   40篇
  1995年   51篇
  1994年   55篇
  1993年   53篇
  1992年   68篇
  1991年   48篇
  1990年   34篇
  1989年   29篇
  1988年   28篇
  1987年   16篇
  1986年   14篇
  1985年   22篇
  1984年   12篇
  1983年   11篇
  1982年   10篇
  1981年   7篇
  1980年   7篇
  1979年   18篇
  1978年   8篇
  1976年   7篇
  1975年   5篇
  1972年   5篇
排序方式: 共有6909条查询结果,搜索用时 15 毫秒
991.
Nasopharyngeal carcinoma (NPC), a subclass of cancers of the neck and head, is a predominant cause of cancer-associated death worldwide. Hence, there is a critical need for research into NPC-related treatment strategies. Cisplatin is a promising therapy option for NPCs and other cancers that is frequently utilized. Some patients acquire resistance to cisplatin therapy, which complicates the successful use of cisplatin treatment in NPCs. Although exosomal transfer of oncogenic miRNAs has been shown to improve recipient cell proliferation, metastasis and chemoresistance, the molecular mechanism behind this effect on NPC has yet to be fully understood. Exosomal microRNAs (miRNAs) from cisplatin-resistant cells were identified as significant mediators of chemoresistance in NPC cells in this investigation. Initially, we found that exosomal miR-106a-5p levels in the serum of chemoresistant and last-cycle patients were greater than in that of non-resistant and first-cycle patients. Also, exosomal miR-106a-5p enhanced the proliferative ability of NPC cells. Mechanistically, exosomal miR-106a-5p targets ARNT2, which further activates AKT phosphorylation, and thus promotes NPC cell proliferation, decreases apoptosis and in turn regulates tumorigenesis. We found similar results using in vivo NPC models, where exosomal miR-106a-5p through regulation of ARNT2 (aryl hydrocarbon receptor nuclear translocator 2) promoted tumorigenesis. Taken together, these findings indicate that exosomal miR-106a-5p could be a promising diagnostic biomarker and drug target for patients with NPC.  相似文献   
992.

Key message

A set of intervarietal substitution lines were developed in rapeseed by recurrent backcrossing and marker-assisted selection and employed for mapping both qualitative and quantitative traits.

Abstract

Intervarietal substitution lines (ISLs) may be assembled into advanced secondary mapping populations that have remarkable potential for resolving trait loci and mapping candidate genes. To facilitate the identification of important genes in oilseed rape (canola, Brassica napus), we developed 89 ISLs using an elite cultivar ‘Zhongyou 821’ (ZY821) as the recipient and a re-synthesized line ‘No.2127’ as the donor. In the whole process of ISLs development, the target chromosome segments were selected based on the genotypes of 300 microsatellite markers evenly distributed across the genome. Eighty-nine ISLs fixed at BC5F4 were genotyped by sequencing using double digestion to survey the lengths of target substitution segments from the donor parent and the background segments from the recurrent parent. The total length of the substituted chromosome segments was 3030.27 Mb, representing 3.56?×?of the Darmor-bzh reference genome sequence (version 4.1). Gene mapping was conducted for two qualitative traits, flower colour and seed-coat colour, and nine quantitative traits including yield- and quality-related traits, with 19 QTLs identified for the latter. Overlapping substitution segments were identified for flower colour and seed-coat colour loci, as well as for QTLs consistently detected in 2 or 3 years. These results demonstrate the value of these ISLs for locus resolution and subsequent cloning, targeted mutation or editing of genes controlling important traits in oilseed rape.
  相似文献   
993.
In order to obtain PDHc-E1 inhibitors with high selectivity and efficacy, four series (7, 12, 15, and 19) of 35 novel 4-aminopyrimidine derivatives were rationally designed and synthesized based on the binding site of ThDP in E. coli PDHc-E1. 12, 15, and 19 were confirmed to be potent inhibitors against E. coli PDHc-E1. Selected compounds 12g, 12i, 15f, and 19a showed negligible inhibition against porcine PDHc-E1. To understand their selectivity, the interaction of inhibitor and E. coli PDHc-E1 or porcine PDHc-E1 was studied by molecular docking. The newly introduced acylhydrazone and N-phenylbenzamide moieties could form stronger interaction by hydrogen bond at the active site of E. coli PDHc-E1 compared with that of porcine PDHc-E1. A part of title compounds as potent PDHc-E1 inhibitors also exhibited notable antibacterial activity. In particular, 12e, 12f, 12g, 12o, and 19a exhibited 72–92% inhibition against Xanthomonas oryzae pv. Oryzae and Ralstonia solanacearum at 100?μg/mL, which was better than thiodiazole-copper (34 and 29%, respectively) and bismerthiazol (56 and 55%, respectively). The results proved that we could obtain effective bactericidal compounds as highly selective PDHc inhibitors by rational molecular design utilizing the binding model of active site of E. coli PDHc-E1.  相似文献   
994.
A series of novel quinazoline derivatives bearing various C-6 benzamide substituents were synthesized and evaluated as EGFR inhibitors, and most showed significant inhibitory potency against EGFR kinase. In particular, compound 6g possessed potent inhibitory activity against EGFR wild-type (IC50?=?5?nM), and strong antiproliferative activity against HCC827 and Ba/F3 (L858R) cell lines. Kinase profiling against a panel of 365 kinases showed that 6g was highly selective for EGFR. Furthermore, 6g showed desirable properties in assays of liver microsome metabolic stability and cytochromes P450 inhibition and preliminary pharmacokinetic study. The overall attractive profile of 6g made it an interesting compound for further development.  相似文献   
995.
996.
997.
The Small Subunit Ribosomal RNA gene (SSU rDNA) is a widely used tool to reconstruct phylogenetic relationships among foraminiferal species. Recently, the highly variable regions of this gene have been proposed as DNA barcodes to identify foraminiferal species. However, the resolution of these barcodes has not been well established, yet. In this study, we evaluate four SSU rDNA hypervariable regions (37/f, 41/f, 43/e, and 45/e) as DNA barcodes to distinguish among species of the genus Bolivina, with particular emphasis on Bolivina quadrata for which ten new sequences ( KY468817 – KY468826 ) were obtained during this study. Our analyses show that a single SSU rDNA hypervariable sequence is insufficient to resolve all Bolivina species and that some regions (37/f and 41/f) are more useful than others (43/e and 45/e) to distinguish among closely related species. In addition, polymorphism analyses reveal a high degree of variability. In the context of barcoding studies, these results emphasize the need to assess the range of intraspecific variability of DNA barcodes prior to their application to identify foraminiferal species in environmental samples; our results also highlight the possibility that a longer SSU rDNA region might be required to distinguish among species belonging to the same taxonomic group (i.e. genus).  相似文献   
998.
999.
Macroautophagy/autophagy has emerged as a resistance mechanism to anticancer drug treatments that induce metabolic stress. Certain tumors, including a subset of KRAS-mutant NSCLCs have been shown to be addicted to autophagy, and potentially vulnerable to autophagy inhibition. Currently, autophagy inhibition is being tested in the clinic as a therapeutic component for tumors that utilize this degradation process as a drug resistance mechanism. The current study provides evidence that HSP90 (heat shock protein 90) inhibition diminishes the expression of ATG7, thereby impeding the cellular capability of mounting an effective autophagic response in NSCLC cells. Additionally, an elevation in the expression level of CASP9 (caspase 9) prodomain in KRAS-mutant NSCLC cells surviving HSP90 inhibition appears to serve as a cell survival mechanism. Initial characterization of this survival mechanism suggests that the altered expression of CASP9 is mainly ATG7 independent; it does not involve the apoptotic activity of CASP9; and it localizes to a late endosomal and pre-lysosomal phase of the degradation cascade. HSP90 inhibitors are identified here as a pharmacological approach for targeting autophagy via destabilization of ATG7, while an induced expression of CASP9, but not its apoptotic activity, is identified as a resistance mechanism to the cellular stress brought about by HSP90 inhibition.  相似文献   
1000.

Objectives

Capillarisin (Cap), an active component of Artemisia capillaris root extracts, is characterized by its anti‐inflammatory, anti‐oxidant and anti‐cancer properties. Nevertheless, the functions of Cap in prostate cancer have not been fully explored. We evaluated the potential actions of Cap on the cell proliferation, migration and invasion of prostate carcinoma cells.

Materials and methods

Cell proliferation and cell cycle distribution were measured by water‐soluble tetrazolium‐1 and flow cytometry assays. The expression of cyclins, p21, p27, survivin, matrix metallopeptidase (MMP2 and MMP9) were assessed by immunoblotting assays. Effects of Cap on invasion and migration were determined by wound closure and matrigel transmigration assays. The constitutive and interlukin‐6 (IL‐6)‐inducible STAT3 activation of prostate carcinoma cells were determined by immunoblotting and reporter assays.

Results

Capillarisin inhibited androgen‐independent DU145 and androgen‐dependent LNCaP cell growth through the induction of cell cycle arrest at the G0/G1 phase by upregulating p21 and p27 while downregulating expression of cyclin D1, cyclin A and cyclin B. Cap decreased protein expression of survivin, MMP‐2, and MMP‐9 and therefore blocked the migration and invasion of DU145 cells. Cap suppressed constitutive and IL‐6‐inducible STAT3 activation in DU145 and LNCaP cells.

Conclusions

Our data indicate that Cap blocked cell growth by modulation of p21, p27 and cyclins. The inhibitory effects of Cap on survivin, MMP‐2, MMP‐9 and STAT3 activation may account for the suppression of invasion in prostate carcinoma cells. Our data suggest that Cap might be a therapeutic agent in treating advanced prostate cancer with constitutive STAT3 or IL‐6‐inducible STAT3 activation.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号