首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6009篇
  免费   443篇
  国内免费   457篇
  6909篇
  2024年   12篇
  2023年   70篇
  2022年   165篇
  2021年   302篇
  2020年   211篇
  2019年   233篇
  2018年   230篇
  2017年   192篇
  2016年   293篇
  2015年   379篇
  2014年   460篇
  2013年   479篇
  2012年   523篇
  2011年   463篇
  2010年   289篇
  2009年   251篇
  2008年   313篇
  2007年   258篇
  2006年   201篇
  2005年   159篇
  2004年   151篇
  2003年   141篇
  2002年   128篇
  2001年   109篇
  2000年   94篇
  1999年   97篇
  1998年   65篇
  1997年   63篇
  1996年   40篇
  1995年   51篇
  1994年   55篇
  1993年   53篇
  1992年   68篇
  1991年   48篇
  1990年   34篇
  1989年   29篇
  1988年   28篇
  1987年   16篇
  1986年   14篇
  1985年   22篇
  1984年   12篇
  1983年   11篇
  1982年   10篇
  1981年   7篇
  1980年   7篇
  1979年   18篇
  1978年   8篇
  1976年   7篇
  1975年   5篇
  1972年   5篇
排序方式: 共有6909条查询结果,搜索用时 46 毫秒
71.
72.
电压依赖性钾通道与人类神经性疾病   总被引:10,自引:0,他引:10  
电压依赖性钾通道是钾通道超家族中成员最多,最为复杂的亚家族,主要包括Kvα亚单位和辅助亚单位两部分,其中快速失活A型通道和毒蕈碱敏感的M通道已被大量研究,它们广泛分布于神经系统,主要参与各种生理和病理作用,如膜兴奋性的产生,神经递质的释放,神经元细胞的增殖和退化,以及神经网络的信号传递等。目前发现Kv通道亚型或亚单位的突变与学习和记忆的损伤,共济失调,癫痫,神经性耳聋等一些神经性疾病的产生有关。  相似文献   
73.
74.
Casein kinases are critical in cell division and differentiation across species. A rice cDNA fragment encoding a putative casein kinase I (CKI) was identified via cDNA macroarray under brassinosteroid (BR) treatment, and a 1939-bp full-length cDNA, OsCKI1, was isolated and found to encode a putative 463-aa protein. RT-PCR and Northern blot analysis indicated that OsCKI1 was constitutively expressed in various rice tissues and upregulated by treatments with BR and abscisic acid (ABA). Enzymatic assay of recombinant OsCKI1 proteins expressed in Escherichia coli showed that the protein was capable of phosphorylating casein. The physiological roles of OsCKI1 were studied through antisense transgenic approaches, and homozygous transgenic plants showed abnormal root development, including fewer lateral and adventitious roots, and shortened primary roots as a result of reduced cell elongation. Treatment of wild-type plants with CKI-7, a specific inhibitor of CKI, also confirmed these functions of OsCKI1. Interestingly, in transgenic and CKI-7-treated plants, exogenously supplied IAA could restore normal root development, and measurement of free IAA content in CKI-deficient primary and adventitious roots revealed altered auxin content, indicating that OsCKI1 is involved in auxin metabolism or that it may affect auxin levels. Transgenic plants were less sensitive than control plants to ABA or BR treatment during germination, suggesting that OsCKI1 may be involved in various hormone-signaling pathways. OsCKI1-GFP fusion studies revealed the localization of OsCKI1 to the nucleus, suggesting a possible involvement in regulation of gene expression. In OsCKI1-deficient plants, differential gene expression was investigated using cDNA chip technology, and results indicated that genes related to signal transduction and hormone metabolism were indeed with altered expression.  相似文献   
75.
Nicotine, one of the most commonly used drugs, has become a major concern because tobacco serves as a gateway drug and is linked to illicit drug abuse, such as cocaine and marijuana. However, previous studies mainly focused on certain genes or neurotransmitters which have already been known to participate in drug addiction, lacking endogenous metabolic profiling in a global view. To further explore the mechanism by which nicotine modifies the response to cocaine, we developed two conditioned place preference (CPP) models in mice. In threshold dose model, mice were pretreated with nicotine, followed by cocaine treatment at the dose of 2 mg/kg, a threshold dose of cocaine to induce CPP in mice. In high-dose model, mice were only treated with 20 mg/kg cocaine, which induced a significant CPP. 1H nuclear magnetic resonance based on metabonomics was used to investigate metabolic profiles of the nucleus accumbens (NAc) and striatum. We found that nicotine pretreatment dramatically increased CPP induced by 2 mg/kg cocaine, which was similar to 20 mg/kg cocaine-induced CPP. Interestingly, metabolic profiles showed considerable overlap between these two models. These overlapped metabolites mainly included neurotransmitters as well as the molecules participating in energy homeostasis and cellular metabolism. Our results show that the reinforcing effect of nicotine on behavioral response to cocaine may attribute to the modification of some specific metabolites in NAc and striatum, thus creating a favorable metabolic environment for enhancing conditioned rewarding effect of cocaine. Our findings provide an insight into the effect of cigarette smoking on cocaine dependence and the underlying mechanism.  相似文献   
76.
大鼠隔区接受海马一氧化氮合酶(NOS)阳性神经元的投射   总被引:1,自引:0,他引:1  
目的逆行追踪大鼠海马NOS阳性神经元向隔区的投射。方法用HRP逆行追踪与NADPH-d组化方法相结合进行研究。结果背、腹、后海马均有NOS阳性神经元投射至隔区各亚细胞群,后海马NOS阳性神经元向隔外侧核(sl)、隔三角核和隔伞核(ts,sf)的投射量,占后海马至隔外侧核、隔三角核和隔伞核投射量的80%左右。结论大鼠隔区接受海马NOS神经元的投射。  相似文献   
77.
In order to find novel antitumor candidate agents with high efficiency and low toxicity, 14 novel substituted 5‐anilino‐α‐glucofuranose derivatives have been designed, synthesized and evaluated for antiproliferative activities in vitro. Their structures were characterized by NMR (1H and 13C) and HR‐MS, and configuration (R/S) at C(5) was identified by two‐dimensional 1H,1H‐NOESY‐NMR spectrum. Their antiproliferative activities against human tumor cells were investigated by MTT assay. The results demonstrated that most of the synthesized compounds had antiproliferative effects comparable to the reference drugs gefitinib and lapatinib. In particular, (5R)‐5‐O‐(3‐chloro‐4‐{[5‐(4‐fluorophenyl)thiophen‐2‐yl]methyl}anilino)‐5‐deoxy‐1,2‐O‐(1‐methylethylidene)‐α‐glucofuranose ( 9da ) showed the most potent antiproliferative effects against SW480, A431 and A549 cells, with IC50 values of 8.57, 5.15 and 15.24 μm , respectively. This work suggested 5‐anilino‐α‐glucofuranose as an antitumor core structure that may open a new way to develop more potent anti‐cancer agents.  相似文献   
78.
Family-1 UDP glycosyltransferases (UGTs) from plants transfer sugar moieties from activated sugar donors to a wide range of small molecules, and control many metabolic processes during plant growth and development. Here, we report a genome-wide analysis of maize that identified 147 Family-1 glycosyltransferases based on their conserved PSPG motifs. Phylogenetic analysis of these genes with 18 Arabidopsis UGTs and two rice UGTs clustered them into 17 groups (A–Q). The patterns of intron gain/loss events, as well as their positions within UGTs from the same group, further aided elucidation of their divergence and evolutionary relationships between UGTs. Expression analysis of the maize UGT genes using both online microarray data and quantitative real-time PCR verification indicates that UGT genes are widely expressed in various tissues and likely play important roles in plant growth and development. Our study provides useful information on the Family-1 UGTs in maize, and will facilitate their further characterization to better understand their functions.  相似文献   
79.
Yang F  Yang J  Zhang X  Chen L  Jiang Y  Yan Y  Tang X  Wang J  Xiong Z  Dong J  Xue Y  Zhu Y  Xu X  Sun L  Chen S  Nie H  Peng J  Xu J  Wang Y  Yuan Z  Wen Y  Yao Z  Shen Y  Qiang B  Hou Y  Yu J  Jin Q 《Nucleic acids research》2005,33(19):6445-6458
The Shigella bacteria cause bacillary dysentery, which remains a significant threat to public health. The genus status and species classification appear no longer valid, as compelling evidence indicates that Shigella, as well as enteroinvasive Escherichia coli, are derived from multiple origins of E.coli and form a single pathovar. Nevertheless, Shigella dysenteriae serotype 1 causes deadly epidemics but Shigella boydii is restricted to the Indian subcontinent, while Shigella flexneri and Shigella sonnei are prevalent in developing and developed countries respectively. To begin to explain these distinctive epidemiological and pathological features at the genome level, we have carried out comparative genomics on four representative strains. Each of the Shigella genomes includes a virulence plasmid that encodes conserved primary virulence determinants. The Shigella chromosomes share most of their genes with that of E.coli K12 strain MG1655, but each has over 200 pseudogenes, 300 approximately 700 copies of insertion sequence (IS) elements, and numerous deletions, insertions, translocations and inversions. There is extensive diversity of putative virulence genes, mostly acquired via bacteriophage-mediated lateral gene transfer. Hence, via convergent evolution involving gain and loss of functions, through bacteriophage-mediated gene acquisition, IS-mediated DNA rearrangements and formation of pseudogenes, the Shigella spp. became highly specific human pathogens with variable epidemiological and pathological features.  相似文献   
80.
Yang XH  Xu ZH  Xue HW 《The Plant cell》2005,17(1):116-131
A putative Membrane Steroid Binding Protein (designated MSBP1) was identified and functionally characterized as a negative regulator of cell elongation in Arabidopsis thaliana. The MSBP1 gene encodes a 220-amino acid protein that can bind to progesterone, 5-dihydrotestosterone, 24-epi-brassinolide (24-eBL), and stigmasterol with different affinities in vitro. Transgenic plants overexpressing MSBP1 showed short hypocotyl phenotype and increased steroid binding capacity in membrane fractions, whereas antisense MSBP1 transgenic plants showed long hypocotyl phenotypes and reduced steroid binding capacity, indicating that MSBP1 negatively regulates hypocotyl elongation. The reduced cell elongation of MSBP1-overexpressing plants was correlated with altered expression of genes involved in cell elongation, such as expansins and extensins, indicating that enhanced MSBP1 affected a regulatory pathway for cell elongation. Suppression or overexpression of MSBP1 resulted in enhanced or reduced sensitivities, respectively, to exogenous progesterone and 24-eBL, suggesting a negative role of MSBP1 in steroid signaling. Expression of MSBP1 in hypocotyls is suppressed by darkness and activated by light, suggesting that MSBP1, as a negative regulator of cell elongation, plays a role in plant photomorphogenesis. This study demonstrates the functional roles of a steroid binding protein in growth regulation in higher plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号