首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15026篇
  免费   1364篇
  国内免费   1709篇
  18099篇
  2024年   64篇
  2023年   249篇
  2022年   548篇
  2021年   898篇
  2020年   640篇
  2019年   731篇
  2018年   699篇
  2017年   506篇
  2016年   685篇
  2015年   996篇
  2014年   1125篇
  2013年   1253篇
  2012年   1394篇
  2011年   1304篇
  2010年   775篇
  2009年   739篇
  2008年   801篇
  2007年   673篇
  2006年   677篇
  2005年   428篇
  2004年   423篇
  2003年   394篇
  2002年   335篇
  2001年   245篇
  2000年   198篇
  1999年   198篇
  1998年   163篇
  1997年   118篇
  1996年   106篇
  1995年   96篇
  1994年   73篇
  1993年   64篇
  1992年   84篇
  1991年   58篇
  1990年   52篇
  1989年   50篇
  1988年   41篇
  1987年   29篇
  1986年   24篇
  1985年   28篇
  1984年   19篇
  1983年   11篇
  1982年   17篇
  1981年   11篇
  1980年   8篇
  1979年   11篇
  1978年   10篇
  1977年   7篇
  1975年   11篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
A rationale for the design of an inhibitor of tyrosyl kinase   总被引:1,自引:0,他引:1  
Two gastrin analogs containing a D- and a L-tetrafluorinated tyrosyl residue (Arg-Arg-Leu-Glu-Glu-Glu-Glu-Glu-Ala-(F4)Tyr-Gly) were synthesized and tested as substrates and inhibitors of the insulin receptor kinase. No phosphorylation of these peptides was observed, but both gastrin analogs were effective inhibitors in the microM range. Although the D- and L-tetrafluorotyrosine-gastrin analogs differ in the sequence by only 1 amino acid residue, a different inhibitory pattern was obtained with the insulin receptor. The inhibition of all-L-isomer is competitive with respect to both the protein substrate, reduced, S-carboxymethylated, and maleylated lysozyme (RCMM-lysozyme), and ATP with a Ki value of 4 microM. This result corroborates a previous finding (Walker, D. H., Kuppuswamy, D., Visvanathan, A., and Pike, L. J. (1987) Biochemistry 26, 1428-1433) that the kinetic mechanism for insulin receptor is a random Bi Bi mechanism. Different from the L-isomer, the D-analog is competitive to RCMM-lysozyme and noncompetitive toward ATP and gives an apparent inhibition constant of 20 microM. A free tetrafluorotyrosine also shows a competitive inhibition to protein substrate, RCMM-lysozyme (Ki = 18 mM) whereas free tyrosine shows no effect on the activity of insulin receptor. These results show the importance of the charge state and nucleophilicity of the phenolic component in substrate recognition and catalysis and provide a rationale for the design of inhibitors of tyrosyl phosphorylation.  相似文献   
12.
Isolated rat pancreatic islets, incubated in the presence of extracellular 32Pi to steady state 32P incorporation into cellular phosphopeptides, were exposed to glucose for 10 min. Glucose (16.7 mM) significantly stimulated the phosphorylation of six phosphoproteins with molecular weights of 15,000, 35,000, 49,000, 64,000, 93,000 and 138,000. Mannoheptulose (16.7 mM) markedly inhibited glucose-stimulated phosphorylation of these six phosphoproteins. This protein phosphorylation might be important in mediating glucose-stimulated insulin release.  相似文献   
13.
14.
There is increasing amount of evidence indicating the close interplays between the replication cycle of SARS-CoV-2 and the autophagy-lysosome pathway in the host cells. While autophagy machinery is known to either assist or inhibit the viral replication process, the reciprocal effects of the SARS-CoV-2 on the autophagy-lysosome pathway have also been increasingly appreciated. More importantly, despite the disappointing results from the clinical trials of chloroquine and hydroxychloroquine in treatment of COVID-19, there is still ongoing effort in discovering new therapeutics targeting the autophagy-lysosome pathway. In this review, we provide an update-to-date summary of the interplays between the autophagy-lysosome pathway in the host cells and the pathogen SARS-CoV-2 at the molecular level, to highlight the prognostic value of autophagy markers in COVID-19 patients and to discuss the potential of developing novel therapeutic strategies for COVID-19 by targeting the autophagy-lysosome pathway. Thus, understanding the nature of such interactions between SARS-CoV-2 and the autophagy-lysosome pathway in the host cells is expected to provide novel strategies in battling against this global pandemic.  相似文献   
15.
16.
PNAS-4 is a novel pro-apoptotic protein activated during the early response to DNA damage; however, the molecular mechanisms and pathways regulating PNAS-4 expression in tumors are not well understood. We hypothesized that PNAS-4 is a p53 down-stream target gene and designed this study. We searched online for putative p53-binding sites in the entire PNAS-4 gene and did not find any corresponding information. In HCT116 colon cancer cells, after being transfected with small interfering RNA to silence p53, the expressions of PNAS-4 and other known p53 target gene (Apaf1, Bax, Fas and Dr5) were determined by real-time PCR. We found that PNAS-4 was up-regulated while Apaf1, Bax, Fas and Dr5 were down-regulated. We then examined the expression of PNAS-4 and p53 mutation in colorectal cancer patients. PNAS-4 expressed both in colorectal cancers and normal tissues, but compared with paired control, PNAS-4 was up-regulated in cancers (P = 0.018). PNAS-4 overexpression ratios were correlated to the p53 mutant status (P = 0.001). The mean PNAS-4 expression levels of p53 mutant homozygote group and heterozygote group were higher than that of p53 wild type group (P = 0.013). The expression ratios of PNAS-4 (every sample in relative to its paired normal mucosa) were different between negative lymph node metastasis (66% up-regulated, 34% down-regulated) and positive metastasis (42% up-regulated, 58% down-regulated). Taken together, these findings suggested that PNAS-4 was not a p53 target, but overexpression of PNAS-4 was correlated to p53 inactivity in colorectal cancer.  相似文献   
17.
The present criteria and rules controlling the approval of the use of probiotics are limited to antibiotic resistance patterns and the presence of antibiotic resistance genes in bacteria. There is little information available in the literature regarding the risk of the usage of probiotics in the presence of antibiotic pressure. In this study we investigated the development and transfer of antibiotic resistance in Bacillus subtilis selected in vitro by chlortetracycline in a stepwise manner. Bacillus subtilis was exposed to increasing concentrations of chlortetracyclineto induce in vitro resistance to chlortetracycline, and the minimal inhibitory concentrations were determinedfor the mutants. Resistant B. subtilis were conjugated with Escherichia coli NK5449 and Enterococcus faecalis JH2-2 using the filter mating. Three B. subtilis tetracycline resistant mutants (namely, BS-1, BS-2, and BS-3) were derived in vitro. A tetracycline resistant gene, tet (K), was found in the plasmids of BS-1 and BS-2. Three conjugates (BS-1N, BS-2N, and BS-3N) were obtained when the resistant B. subtilis was conjugated with E. coli NK5449. The conjugation frequencies for the BS-1N, BS-2N, and BS-3N conjugates were 4.57×10?7, 1.4×10?7, and 1.3×10?8, respectively. The tet(K) gene was found only in the plasmids of BS-1N. These results indicate that long-term use of probiotics under antibiotic selection pressure could cause antibiotic resistance, and the resistance gene could be transferred to other bacteria. The risk arising from the use of probiotics under antibiotic pressure should be considered in the criteria and rules for the safety assessment of probiotics.  相似文献   
18.
处于对数生长期的光合细菌球形红假单胞菌(Rhodopseudomonassphaeroides)、沼泽红假单胞菌(Rhodopseudomonaspalustris)、嗜酸红假单胞菌(Rhodopseudomdnasacidophila)、深红红螺菌(Rhodospirarubrum)、万尼氏红微菌(Rhodomocrobiumvannielii),经溶菌酶(3mg/L)处理50min后,获得了它们的菌体形成的原生质体,其再生率分别为80%、71%、82%、61%、74%.取等量的亲本菌株在35%的PEG(MW6000)诱导下两两融合5min,共10种组合.其融合率为球×沼2.5×10-4、球×嗜2.1×10-4、球×深2.0×10-4、球×万2.1×10-4、沼×嗜2.8×10-4、沼×深2.4×10-4、沼×万2.6×10-4、嗜×深2.0×10-4、嗜×万2.3×10-4、深×万2.4×10-4.经影印法鉴定:形成的融合子可以分别生长于以相应的有机物为唯一碳源的培养基上,所有融合子体积均相当于两亲本株体积之和,融合子菌落形态特征介于两亲本株之间.从中随机挑选100个融合子,以辣椒苗作为靶标植物,从上述融合子中筛选到了1株具有显著促进作物生长、提高抗病性的融合子.  相似文献   
19.
Gao  Lei  Yuan  Zihao  Li  Yunfeng  Ma  Zhen 《Functional & integrative genomics》2022,22(3):317-330
Functional & Integrative Genomics - DNAJ proteins function as co-chaperones of HSP70 and play key roles in cell physiology to promote protein folding and degradation, especially under...  相似文献   
20.
The aroma active compounds of three Tuber fruiting bodies (i.e., Tuber himalayense, Tuber indicum, and Tuber sinense) were firstly systematically evaluated by instrumental gas chromatography–olfactometry combining with quantitative analysis, aroma reconstitution, and omission tests. Twelve aroma active compounds were characterized by aroma extract dilution analysis, and 3-(methylthio) propanal, 3-methylbutanal, and 1-octen-3-ol with the highest flavor dilution (FD) factor (i.e., 1,024–2,048) were suggested as key contributors to the aroma. Odor activity value (OAV) was employed to determine the relative contribution of each compound to the aroma, and the compound with the highest FD factor also had the highest OAV (i.e., 10,234–242,951). Then, the synthetic blends of odorants (aroma reconstitution) were prepared with OAV larger than 15, and their aromas were very similar to the originals. Omission tests were carried out to verify the significance of 3-(methylthio) propanal, 1-octen-3-ol, and 3-methylbutanal as key compounds in the aroma of tested Tuber fruiting bodies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号