首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2268篇
  免费   174篇
  国内免费   2篇
  2024年   3篇
  2023年   3篇
  2022年   25篇
  2021年   34篇
  2020年   21篇
  2019年   44篇
  2018年   56篇
  2017年   59篇
  2016年   107篇
  2015年   151篇
  2014年   152篇
  2013年   166篇
  2012年   213篇
  2011年   201篇
  2010年   143篇
  2009年   122篇
  2008年   157篇
  2007年   144篇
  2006年   119篇
  2005年   112篇
  2004年   136篇
  2003年   88篇
  2002年   65篇
  2001年   18篇
  2000年   18篇
  1999年   23篇
  1998年   11篇
  1997年   11篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   5篇
  1992年   4篇
  1991年   4篇
  1990年   2篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1985年   3篇
  1984年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
  1968年   2篇
  1967年   1篇
  1857年   1篇
  1856年   2篇
排序方式: 共有2444条查询结果,搜索用时 109 毫秒
121.
It has become increasingly apparent that the high molecular mass glycosaminoglycan, hyaluronan (HA), is required for many morphogenetic processes during vertebrate development. This renewed understanding of the various developmental roles for HA, has come about largely through the advent of gene targeting approaches in the mouse. To date, mutations have been engineered in the enzymes responsible for biosynthesis and degradation and for those proteins that bind to HA within the extracellular matrix and at the cell surface. Collectively, the phenotypes resulting from these mutations demonstrate that HA is critical for normal mammalian embryogenesis and for various processes in postnatal and adult life (Table 1). In this article we will review our progress in understanding the biological functions for HA through targeted mutagenesis of the HA synthase 2 (Has2) and 3 (Has3) genes. Data that has been obtained from a conventional targeted disruption of the Has2 gene, is presented in an accompanying review by Camenisch and McDonald. More specifically, in this review we will provide an overview of the conditional gene targeting strategy being used to create tissue-specific deficiencies in Has2 function, along with our progress in understanding the role for Has3-dependent HA biosynthesis. Published in 2003.  相似文献   
122.
A gene (slr1166) putatively encoding pteridine glycosyltransferase was disrupted with a kanamycin resistance cassette in Synechocystis sp. PCC 6803, which produces cyanopterin. The deduced polypeptide from slr1166 consisted of 354 amino acid residues sharing 45% sequence identity with UDP-glucose:tetrahydrobiopterin alpha-glucosyltransferase (BGluT) isolated previously from Synechococcus sp. PCC 7942. The knockout mutant was unable to produce cyanopterin but only 6-hydroxymethylpterin-beta-galactoside, verifying that slr1166 encodes a pteridine glycosyltransferase, which is responsible for transfer of the second sugar glucuronic acid in cyanopterin synthesis. The mutant was affected in its intracellular pteridine content and growth rate, which were 74% and 80%, respectively, of wild type, demonstrating that the second sugar residue is still required for quantitative maintenance of cyanopterin. This supports the previous suggestion that glycosylation may contribute to high cellular concentration of pteridine compounds.  相似文献   
123.
AIMS: An investigation was carried out on an oxidative and SDS-stable alkaline protease secreted by Bacillus clausii of industrial significance. METHODS AND RESULTS: Maximum enzyme activity was produced when the bacterium was grown in the medium containing (g l-1): soyabean meal, 15; wheat flour, 10; liquid maltose, 25; K2HPO4, 4; Na2HPO4, 1; MgSO4.7H2O, 0.1; Na2CO3, 6. The enzyme has an optimum pH of around 11 and optimum temperature of 60 degrees C. The alkaline protease showed extreme stability towards SDS and oxidizing agents, which retained its activity above 75 and 110% on treatment for 72 h with 5% SDS and 10% H2O2, respectively. Inhibition profile exhibited by phenylmethylsulphonyl fluoride suggested that the protease from B. clausii belongs to the family of serine proteases. CONCLUSIONS: Bacillus clausii produced high levels of an extracellular protease having high stability towards SDS and H2O2. SIGNIFICANCE AND IMPACT OF THE STUDY: The alkaline protease from B. clausii I-52 is significant for an industrial perspective because of its ability to function in broad pH and temperature ranges in addition to its tolerance and stability in presence of an anionic surfactant, like SDS and oxidants like peroxides and perborates. The enzymatic properties of the protease also suggest its suitable application as additive in detergent formulations.  相似文献   
124.
125.
Kim M  Kwon T  Lee HJ  Kim KH  Chung DK  Ji GE  Byeon ES  Lee JH 《Biotechnology letters》2003,25(15):1211-1217
A DNA fragment, which complemented the growth of E. coli both on M9 medium containing raffinose and on LB medium containing ampicillin, IPTG and 5-bromo-4-chloro-3-indoxyl--d-galactoside, was isolated from the genomic library of Bifidobacterium longum SJ32, which had been digested with EcoRI. In the cloned DNA fragment, a gene encoding a sucrose phosphorylase (splP) and a partially cloned putative sucrose regulator gene (splR) were identified using the deletion analysis and sequence analysis. A 56 kDa protein was synthesized in E. coli and partially purified by DEAE-ion exchange chromatography. The partially purified enzyme did not react with melibiose, melezitoze and raffinose but did with sucrose. It had transglucosylation activity in addition to hydrolytic activity.  相似文献   
126.
A microbial fuel cell type of biosensor was used to determine the biochemical oxygen demand (BOD) of wastewater. The biosensor gave a good correlation between the BOD value and the coulomb produced. The BOD sensor has been operated for over 5 years in a stable manner without any servicing. This is much longer that that of previously reported BOD biosensors.  相似文献   
127.
Broiler chicks were orally dosed with a hot-water extract of mycelia from Cordyceps sinensis (CS-HW) to assess possible substitution of Avilamycin as an antibiotic growth promoter (AGP). The growth performance (body weight gain and survivability) and the health index (the microflora in the small intestines and the antibody titer to Newcastle disease virus) of chicks were significantly improved in the CS-HW (600 mg/kg diet) and the Avilamycin (20 mg/kg diet) fed group in comparison with the control group (p<0.05). The Avilamycin-fed group and the CS-HW-fed group had similar growth performances but the latter gave a better microbial flora in the small intestines. These results indicate that CS-HW enhances the physiological activity in chicks and can be used as a substitute for AGPs.  相似文献   
128.
129.
Yu JH  Yun SY  Lim JW  Kim H  Kim KH 《Proteomics》2003,3(12):2437-2445
Mitochondrion is a vulnerable intracellular target to reactive oxygen species (ROS). ROS have been considered to be important regulators of the pathogenesis of pancreatitis. This study aims to determine whether ROS induces mitochondrial damage by monitoring the expression level of mitochondrial ATP synthase as the key molecular component in mitochondria associated with cellular damage. Pancreatic acinar AR42J cells were treated with cerulein which induces symptoms similar to that associated with human acute pancreatitis. Proteins were separated by two-dimensional electrophoresis using pH gradients of 5-8 and identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MS), quadrupole time-of-flight MS and MS/MS with nano-electrospray. Following cerulein treatment, mitochondrial ATP synthase beta chain was highly expressed compared to nontreated cell. The protein was identified by its pI of 5.2 and molecular weight (56 354 Da) with 27 matched peptides. Among the MS spectrum, precursor ions m/z 488.28, 544.81, 631.82, 693.34, 718.38, 729.41, 801.40, 809.39, 825.94, and 994.52 were further identified using MS/MS and confirmed the isolated protein to be mitochondrial ATP synthase beta chain. In conclusion, cerulein-induced oxidative injury may result in the induction of mitochondrial ATP synthase, which may act as an adaptive pathophysiological process in the pancreas.  相似文献   
130.
We investigated which transient receptor potential (TRP) channel is responsible for the nonselective cation channel (NSCC) activated by carbachol (CCh) in murine stomach with RT-PCR and the electrophysiological method. All seven types of TRP mRNA were detected in murine stomach with RT-PCR. When each TRP channel was expressed, the current-voltage relationship of mTRP5 was most similar to that recorded in murine gastric myocytes. mTRP5 showed a conductance order of Cs(+) > K(+) > Na(+), similar to that in the murine stomach. With 0.2 mM GTPgammaS in the pipette solution, the current was activated transiently in both NSCC in the murine stomach and the expressed mTRP5. Both NSCC activated by CCh in murine stomach and mTRP5 were inhibited by intracellularly applied anti-G(q/11) antibody, PLC inhibitor U-73122, IICR inhibitor 2-aminoethoxydiphenylborate, and nonspecific cation channel blockers La(3+) and flufenamate. There were two other unique properties. Both the native NSCC and mTRP5 were activated by 1-oleoyl-2-acetyl-sn-glycerol. Without the activation of NSCC by CCh, the NSCC in murine stomach was constitutively active like mTRP5. From the above results, we suggest that mTRP5 might be a candidate for the NSCC activated by ACh or CCh in murine stomach.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号