首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   563篇
  免费   25篇
  国内免费   66篇
  2024年   2篇
  2023年   9篇
  2022年   11篇
  2021年   28篇
  2020年   13篇
  2019年   22篇
  2018年   15篇
  2017年   17篇
  2016年   26篇
  2015年   26篇
  2014年   43篇
  2013年   49篇
  2012年   52篇
  2011年   42篇
  2010年   30篇
  2009年   30篇
  2008年   38篇
  2007年   35篇
  2006年   28篇
  2005年   23篇
  2004年   22篇
  2003年   19篇
  2002年   16篇
  2001年   10篇
  2000年   6篇
  1999年   3篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1993年   7篇
  1992年   6篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1970年   1篇
排序方式: 共有654条查询结果,搜索用时 15 毫秒
61.
The phosphoinositide 3-kinase–Akt signaling pathway is essential to many biological processes, including cell proliferation, survival, metabolism, and angiogenesis, under pathophysiological conditions. Although 3-phosphoinositide–dependent kinase 1 (PDK1) is a primary activator of Akt at the plasma membrane, the optimal activation mechanism remains unclear. We report that adhesion molecule with IgG-like domain 2 (AMIGO2) is a novel scaffold protein that regulates PDK1 membrane localization and Akt activation. Loss of AMIGO2 in endothelial cells (ECs) led to apoptosis and inhibition of angiogenesis with Akt inactivation. Amino acid residues 465–474 in AMIGO2 directly bind to the PDK1 pleckstrin homology domain. A synthetic peptide containing the AMIGO2 465–474 residues abrogated the AMIGO2–PDK1 interaction and Akt activation. Moreover, it effectively suppressed pathological angiogenesis in murine tumor and oxygen-induced retinopathy models. These results demonstrate that AMIGO2 is an important regulator of the PDK1–Akt pathway in ECs and suggest that interference of the PDK1–AMIGO2 interaction might be a novel pharmaceutical target for designing an Akt pathway inhibitor.  相似文献   
62.
Stripe rust is a devastating fungal disease of wheat caused by Puccinia striiformis f. sp tritici (Pst). The WHEAT KINASE START1 (WKS1) resistance gene has an unusual combination of serine/threonine kinase and START lipid binding domains and confers partial resistance to Pst. Here, we show that wheat (Triticum aestivum) plants transformed with the complete WKS1 (variant WKS1.1) are resistant to Pst, whereas those transformed with an alternative splice variant with a truncated START domain (WKS1.2) are susceptible. WKS1.1 and WKS1.2 preferentially bind to the same lipids (phosphatidic acid and phosphatidylinositol phosphates) but differ in their protein-protein interactions. WKS1.1 is targeted to the chloroplast where it phosphorylates the thylakoid-associated ascorbate peroxidase (tAPX) and reduces its ability to detoxify peroxides. Increased expression of WKS1.1 in transgenic wheat accelerates leaf senescence in the absence of Pst. Based on these results, we propose that the phosphorylation of tAPX by WKS1.1 reduces the ability of the cells to detoxify reactive oxygen species and contributes to cell death. This response takes several days longer than typical hypersensitive cell death responses, thus allowing the limited pathogen growth and restricted sporulation that is characteristic of the WKS1 partial resistance response to Pst.  相似文献   
63.
Adipose tissue is a structure highly specialized in energy storage. The adipocyte is the parenchymal component of adipose tissue and is known to be mesoderm or neuroectoderm in origin; however, adipocyte development remains poorly understood. Here, we investigated the development of adipose tissue by analyzing postnatal epididymal adipose tissue (EAT) in mouse. EAT was found to be generated from non-adipose structure during the first 14 postnatal days. From postnatal day 1 (P1) to P4, EAT is composed of multipotent progenitor cells that lack adipogenic differentiation capacity in vitro, and can be regarded as being in the 'undetermined' state. However, the progenitor cells isolated from P4 EAT obtain their adipogenic differentiation capacity by physical interaction generated by cell-to-matrix and cell-to-cell contact both in vitro and in vivo. In addition, we show that impaired angiogenesis caused by either VEGFA blockade or macrophage depletion in postnatal mice interferes with adipose tissue development. We conclude that appropriate interaction between the cellular and matrix components along with proper angiogenesis are mandatory for the development of adipose tissue.  相似文献   
64.
The resolution of chiral compound‐forming systems using hybrid processes was discussed recently. The concept is of large relevance as these systems form the majority of chiral substances. In this study, a novel hybrid process is presented, which combines pertraction and subsequent preferential crystallization and is applicable for the resolution of such systems. A supported liquid membrane applied in a pertraction process provides enantiomeric enrichment. This membrane contains a solution of a chiral compound acting as a selective carrier for one of the enantiomers. Screening of a large number of liquid membranes and potential carriers using the conductor‐like screening model for realistic solvation method led to the identification of several promising carriers, which were tested experimentally in several pertraction runs aiming to yield enriched (+)‐(S)‐mandelic acid (MA) solutions from racemic feed solutions. The most promising system consisted of tetrahydronaphthalene as liquid membrane and hydroquinine‐4‐methyl‐2‐quinolylether (HMQ) as chiral carrier achieving enantiomeric excesses of 15% in average. The successful production of (+)‐(S)‐MA with a purity above 96% from enriched solutions by subsequent preferential crystallization proved the applicability of the hybrid process. Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   
65.
The Rinshoken cataract (rct) mutation, which causes congenital cataracts, is a recessive mutation found in SJL/J mice. All mutants present with opacity in the lens by 2?months of age. The rct locus was mapped to a 1.6-Mb region in Chr 4 that contains the Foxe3 gene. This gene is responsible for cataracts in humans and mice, and it plays a crucial role in the development of the lens. Furthermore, mutation of Foxe3 causes various ocular defects. We sequenced the genomic region of Foxe3, including the coding exons and UTRs; however, no mutations were discovered in these regions. Because there were no differences in Foxe3 sequences between the rct/rct and wild-type mice, we inferred that a mutation was located in the regulatory regions of the Foxe3 gene. To test this possibility, we sequenced a 5' noncoding region that is highly conserved among vertebrates and is predicted to be the major enhancer of Foxe3. This analysis revealed a deletion of 22-bp located approximately 3.2-kb upstream of the start codon of Foxe3 in rct mice. Moreover, we demonstrated by RT-PCR and in situ hybridization that the rct mutant has reduced expression of Foxe3 in the lens during development. We therefore suggest that cataracts in rct mice are caused by reduced Foxe3 expression in the lens and that this decreased expression is a result of a deletion in a cis-acting regulatory element.  相似文献   
66.
Ren Y  Xing XH  Zhang C  Gou Z 《Biotechnology letters》2005,27(14):1029-1033
Assay of hydrogenase activity pertaining to H2 production needs anaerobic conditions. To establish a simplified method for assay of hydrogenase activities by using intact cells of Enterobater aerogenes, different chemicals capable of enhancing the cell-wall permeability to electron mediators were examined. As a result, Triton X-100 and CTAB were found to be appropriate for H2 uptake and evolution activities of the intact cells, respectively. This method enabled H2 uptake and evolution activities of the intact cells to be easily detected. This is also the first report of the presence of H2 uptake hydrogenase activity in E. aerogenes.Revisions requested 2 March 2005 and 21 April 2005; Revisions received 12 April 2005 and 17 May 2005  相似文献   
67.
Angiopoietin-2 (Ang2) is a complex regulator of vascular remodeling that plays a role in both blood vessel sprouting and blood vessel regression through its receptor Tie2. Recombinant Chinese hamster ovary (rCHO) cell lines expressing a high level (20 microg/mL) of recombinant human Ang2 protein (rhAng2) with an amino-terminal FLAG-tag was constructed by transfecting the expression vectors into dihydrofolate reductase (dhfr)-deficient CHO cells and the subsequent gene amplification in medium containing stepwise increments in methotrexate level such as 0.02, 0.08, and 0.32 microM. The rhAng2 secreted from rCHO cells was purified at a purification yield of 53.6% from the cultured medium using an anti-FLAG M2 agarose affinity gel. SDS-PAGE and Western blot analyses showed that rCHO cells secret rhAng2 as a homodimeric glycoprotein form. Furthermore, rhAng2 binds to the Tie2 receptor and phosphorylates Tie2 in a concentration-dependent manner. Therefore, our rhAng2 could be useful for clarifying biological effect of exogenous Ang2 in the future.  相似文献   
68.
DivIB, DivIC and FtsL are bacterial proteins essential for cell division, which show interdependencies for their stabilities and localization. We have reconstituted in vitro a trimeric complex consisting of the recombinant extracellular domains of the three proteins from Streptococcus pneumoniae. The extracellular domain of DivIB was found to associate with a heterodimer of those of DivIC and FtsL. The heterodimerization of DivIC and FtsL was artificially constrained by fusion with interacting coiled-coils. Immunofluorescence experiments showed that DivIC is always localized at mid-cell, in contrast to DivIB and FtsL, which are co-localized with DivIC only during septation. Taken together, our data suggest that assembly of the trimeric complex DivIB/DivIC/FtsL is regulated during the cell cycle through controlled formation of the DivIC/FtsL heterodimer.  相似文献   
69.
Fatty acid has been reported to be associated with cardiovascular diseases and cancer, but the possible mechanism remains unclear. Here, we reported a novel mechanism for the permissive role of fatty acid on iron intracellular translocation and subsequent oxidative injury. In vitro study from endothelial cells showed that iron alone had little effect, whereas in combination with PA (palmitic acid), iron-mediated toxicity was markedly potentiated, as reflected in mitochondrial dysfunction, cell death, apoptosis, and DNA mutation. We also showed that PA not only facilitated iron translocation into cells through a transferrin-receptor (TfR)-independent mechanism, but also translocated iron into mitochondria; the subsequent intracellular iron overload resulted in reactive oxygen species (ROS) overgeneration and lipid oxidation. Further investigation revealed that PA-facilitated iron translocation is due to Fe/PA-mediated extracellular oxidative stress and the subsequent membrane damage with increased membrane permeability. Fe/PA-mediated toxic effects were reduced in rho0 cells lacking mitochondrial DNA or by antioxidant enzyme SOD, especially mitochondrially localized MnSOD, suggesting a permissive role of PA for iron deposition on the vascular wall and its subsequent toxicity via mitochondrial oxidative stress. This observation was confirmed in vivo in mice, wherein higher vascular iron deposition and accompanying superoxide release were observed in the presence of a high-fat diet with iron administration.  相似文献   
70.
A 3D sodium(I) complex driven by the coordination bonds and a 3D hydrogen-bond-sustained network, with empirical formulae [Na2(3,5-pdc)(H2O)4]n (1) and [Na2(4-pc)2(H2O)8]n (2), respectively, have been synthesized and characterized. X-ray single crystal determination of 1 reveals that two types of hexa-coordinate sodium(I) ions are alternately arranged through three double μ2-OH2 bridges and one double μ2 oxygen bridge coming from one carboxylic oxygen atom of a 3,5-pdc ligand. In comparison to 1, only one kind of six-coordinate sodium ions in octahedral coordination configurations is bridged by double μ2 aqua bridges in 2 forming a straight line via the similar Na-Na separations. In addition, the fixation of coordinating bonds around the sodium centers in 1 makes pyridine rings parallel to each other and the centroid-centroid separation of 3.539 Å, while in complex 2 pyridine rings are arranged more flexibly merely by the hydrogen bonding interactions associated with its nitrogen atom and a carboxylic group. To the best of our knowledge, 1 is the first 3D framework sustained only by coordination interactions between alkali metals and carboxylates. It is also noted that two types of hexa-coordinate sodium(I) centers are present in complex 1 at the same time and two kinds of topologies (zig-zag and ring) are produced. Complex 2 is an unprecedented 3D sodium(I) network sustained by the hydrogen bonding and the π-π interactions in the absence of coordination forces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号