首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   25篇
  203篇
  2022年   2篇
  2021年   7篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   5篇
  2013年   8篇
  2012年   9篇
  2011年   10篇
  2010年   10篇
  2009年   10篇
  2008年   5篇
  2007年   9篇
  2005年   9篇
  2004年   6篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   12篇
  1999年   8篇
  1998年   8篇
  1997年   2篇
  1996年   8篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   5篇
  1988年   5篇
  1987年   1篇
  1986年   5篇
  1985年   5篇
  1984年   1篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1969年   2篇
  1933年   1篇
排序方式: 共有203条查询结果,搜索用时 15 毫秒
81.
Polo-like kinase-2 (Plk-2) is a potential therapeutic target for Parkinson’s disease and this Letter describes the SAR of a series of dihydropteridinone based Plk-2 inhibitors. By optimizing both the N-8 substituent and the biaryl region of the inhibitors we obtained single digit nanomolar compounds such as 37 with excellent selectivity for Plk-2 over Plk-1. When dosed orally in rats, compound 37 demonstrated a 41–45% reduction of pS129-α-synuclein levels in the cerebral cortex.  相似文献   
82.
Utilizing a structure based design approach, combined with extensive medicinal chemistry execution, highly selective, potent and novel BACE1 inhibitor 8 (BACE1 Alpha assay IC50 = 8 nM) was made from a weak μM potency hit in an extremely efficient way. The detailed SAR and general design approaches will be discussed.  相似文献   
83.
Selective targeting of transfected mesenchymal stem cells (MSCs) carrying specific antioncogenes to the tumor was suggested as a treatment option. Bone morphogenetic protein-2 (BMP2) was shown to inhibit the proliferation and aggressiveness of osteosarcoma (OS) cells. Here, we aimed to assess the homing efficiency of intraperitoneally administered hMSCs transfected with BMP2 to the tumoral site and their effects on OS using an orthotopic xenograft murine model. Orthotopic xenograft murine model of OS in six-week-old female NOD/SCID mice using 143B cells was established. hMSCs transfected with BMP2 (BMP2+hMSC) were used. In vivo experiments performed on four groups of mice that received no treatment, or intraperitoneally administered BMP2, hMSCs, and BMP2+hMSCs. Histopathological and immunohistochemical studies were used to evaluate the pathological identification and to assess the dimensions and necrotic foci of the tumor, the features of lung metastases, and immunostaining against p27, Ki-67, and caspase-3 antibodies. The osteogenic differentiation markers BMP2, BMP4, COL1A1, OPN, OCN and PF4 evaluated using RT-PCR. The tumor dimensions in the hMSCs group were significantly higher than those of the remaining groups (p < 0.01). The number of metastatic foci in the BMP2+hMSCs group was significantly lower than those of the other groups (p < 0.01). The current results showed that the intraperitoneal route could be efficiently used for targeting hMSCs to the tumoral tissues for effective BMP2 delivery. In this study, the effects of BMP2 transfected hMSCs on human OS and metastasis were promising for achieving osteogenic differentiation and reduced metastatic process.  相似文献   
84.
Computational protein design procedures were applied to the redesign of the entire sequence of a 51 amino acid residue protein, Drosophila melanogaster engrailed homeodomain. Various sequence optimization algorithms were compared and two resulting designed sequences were experimentally evaluated. The two sequences differ by 11 mutations and share 22% and 24% sequence identity with the wild-type protein. Both computationally designed proteins were considerably more stable than the naturally occurring protein, with midpoints of thermal denaturation greater than 99 degrees C. The solution structure was determined for one of the two sequences using multidimensional heteronuclear NMR spectroscopy, and the structure was found to closely match the original design template scaffold.  相似文献   
85.
Opportunistic fungal infections increase morbidity and mortality in COVID-19 patients monitored in intensive care units (ICU). As patients’ hospitalization days in the ICU and intubation period increase, opportunistic infections also increase, which prolongs hospital stay days and elevates costs. The study aimed to describe the profile of fungal infections and identify the risk factors associated with mortality in COVID-19 intensive care patients. The records of 627 patients hospitalized in ICU with the diagnosis of COVID-19 were investigated from electronic health records and hospitalization files. The demographic characteristics (age, gender), the number of ICU hospitalization days and mortality rates, APACHE II scores, accompanying diseases, antibiotic-steroid treatments taken during hospitalization, and microbiological results (blood, urine, tracheal aspirate samples) of the patients were recorded. Opportunistic fungal infection was detected in 32 patients (5.10%) of 627 patients monitored in ICU with a COVID-19 diagnosis. The average APACHE II score of the patients was 28 ± 6. While 25 of the patients (78.12%) died, seven (21.87%) were discharged from the ICU. Candida parapsilosis (43.7%) was the opportunistic fungal agent isolated from most blood samples taken from COVID-19 positive patients. The mortality rate of COVID-19 positive patients with candidemia was 80%. While two out of the three patients (66.6%) for whom fungi were grown from their tracheal aspirate died, one patient (33.3%) was transferred to the ward. Opportunistic fungal infections increase the mortality rate of COVID-19-positive patients. In addition to the risk factors that we cannot change, invasive procedures should be avoided, constant blood sugar regulation should be applied, and unnecessary antibiotics use should be avoided.  相似文献   
86.
Human oxyhemoglobin reacted with 4-isothiocyanatobenzoic acid shows a decreased oxygen affinity that does not change with increasing chloride concentration indicating that all of the oxygen-linked chloride binding sites are blocked in the modified protein. By contrast, reaction of oxyhemoglobin with 4-isothiocyanatobenzenesulfonamide produces a modified protein with increased oxygen affinity below pH 7.3 that shows the expected decrease in oxygen affinity with increasing chloride concentration. The latter result demonstrates the importance of the negatively charged moiety in producing both the decrease in oxygen affinity and the effect on the oxygen-linked chloride binding sites produced by 4-isothiocyanatobenzoic acid. Reduction in the alkaline Bohr effect by 50% in the protein modified by 4-isothiocyanatobenzoic acid indicates that contribution to the alkaline Bohr effect is evenly divided between chloride dependent and chloride independent groups.  相似文献   
87.
The phylogenetic potential of entire 26S rDNA sequences in plants   总被引:6,自引:1,他引:5  
18S ribosomal RNA genes are the most widely used nuclear sequences for phylogeny reconstruction at higher taxonomic levels in plants. However, due to a conservative rate of evolution, 18S rDNA alone sometimes provides too few phylogenetically informative characters to resolve relationships adequately. Previous studies using partial sequences have suggested the potential of 26S or large-subunit (LSU) rDNA for phylogeny retrieval at taxonomic levels comparable to those investigated with 18S rDNA. Here we explore the patterns of molecular evolution of entire 26S rDNA sequences and their impact on phylogeny retrieval. We present a protocol for PCR amplification and sequencing of entire (approximately 3.4 kb) 26S rDNA sequences as single amplicons, as well as primers that can be used for amplification and sequencing. These primers proved useful in angiosperms and Gnetales and likely have broader applicability. With these protocols and primers, entire 26S rDNA sequences were generated for a diverse array of 15 seed plants, including basal eudicots, monocots, and higher eudicots, plus two representatives of Gnetales. Comparisons of sequence dissimilarity indicate that expansion segments (or divergence domains) evolve 6.4 to 10.2 times as fast as conserved core regions of 26S rDNA sequences in plants. Additional comparisons indicate that 26S rDNA evolves 1.6 to 2.2 times as fast as and provides 3.3 times as many phylogenetically informative characters as 18S rDNA; compared to the chloroplast gene rbcL, 26S rDNA evolves at 0.44 to 1.0 times its rate and provides 2.0 times as many phylogenetically informative characters. Expansion segment sequences analyzed here evolve 1.2 to 3.0 times faster than rbcL, providing 1.5 times the number of informative characters. Plant expansion segments have a pattern of evolution distinct from that found in animals, exhibiting less cryptic sequence simplicity, a lower frequency of insertion and deletion, and greater phylogenetic potential.   相似文献   
88.
Abstract: This study analyzed the effects of acute systemic treatment with buthionine sulfoximine (BSO), a synthesis inhibitor of the antioxidant reduced glutathione (GSH), on dopaminergic neurons of the murine nigrostriatal pathway. Part 1 of the study established a dose-response curve and the temporal pattern of GSH loss and recovery in the substantia nigra and striatum following acute BSO treatment. Part 2 of the study determined the effect of acute BSO treatment on the morphology and biochemistry of nigrostriatal neurons. We found that decreases in GSH levels had profound morphological effects, including decreased catecholamine fluorescence per cell, increased levels of lipid peroxidation and lipofuscin accumulation, and increased numbers of dystrophic axons in dopaminergic neurons of the nigrostriatal pathway. However, no measurable effects were observed in biochemical levels of either dopamine or its metabolites. These changes mimic those that have been reported to occur in the nigrostriatal system of rodents with advancing age. Our data suggest that reduction of GSH via BSO treatment results in the same types of nigrostriatal degenerative effects that occur during the aging process and consequently is a good model system for examining the role of GSH in protecting this area of the brain against the harmful effects of age-related oxidative stress.  相似文献   
89.
We have identified and characterised a cluster of six TRIM-B30.2 genes flanking the chicken BF/BL region of the B complex. The TRIM-B30.2 proteins are a subgroup of the TRIM protein family containing the tripartite motif (TRIM), consisting of a RING domain, a B-box and a coiled coil region, and a B30.2-like domain. In humans, a cluster of seven TRIM-B30.2 genes has been characterised within the MHC on Chromosome 6p21.33. Among the six chicken TRIM-B30.2 genes two are orthologous to those of the human MHC, and two (TRIM41 and TRIM7) are orthologous to human genes located on Chromosome 5. In humans, these last two genes are adjacent to GNB2L1, a guanine nucleotide-binding protein gene, the ortholog of the chicken c12.3 gene situated in the vicinity of the TRIM-B30.2 genes. This suggests that breakpoints specific to mammals have occurred and led to the remodelling of their MHC structure. In terms of structure, like their mammalian counterparts, each chicken gene consists of five coding exons; exon 1 encodes the RING domain and the B-box, exons 2, 3 and 4 form the coiled-coil region, and the last exon represents the B30.2-like domain. Phylogenetic analysis led us to assume that this extended BF/BL region may be similar to the human extended class I region, because it contains a cluster of BG genes sharing an Ig-V like domain with the BTN genes (Henry et al. 1997a) and six TRIM-B30.2 genes containing the B30.2-like domain, shared with the TRIM-B30.2 members and the BTN genes.  相似文献   
90.
Neuronal damage in certain cellular populations in the brain has been linked to oxidative stress accompanied by an elevation in intracellular calcium. Many questions remain about how such oxidative stress occurs and how it affects calcium homeostasis. Glutathione (GSH) is a major regulator of cellular redox status in the brain, and lowered GSH levels have been associated with dopaminergic cell loss in Parkinson’s disease (PD). We found that transfection of antisense oligomers directed against glutamylcysteine synthetase (GCS), the rate-limiting enzyme in GSH synthesis, into PC12 cells resulted in decreased GSH and increased levels of ROS. Decreased GSH levels also correlated with an increase in intracellular calcium levels. Data from this study suggest that dopaminergic neurons are very sensitive to decreases in the internal oxidant buffering capacity of the cell caused by reductions in GSH levels, and that alterations in this parameter can result in disruption of calcium homeostasis and cell death. These results may be of particular significance for therapeutic treatment of PD, as those dopaminergic neurons that are spared in this disorder appear to contain the calcium binding protein, calbindin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号