全文获取类型
收费全文 | 91篇 |
免费 | 10篇 |
专业分类
101篇 |
出版年
2024年 | 1篇 |
2022年 | 1篇 |
2021年 | 8篇 |
2020年 | 2篇 |
2019年 | 1篇 |
2018年 | 2篇 |
2017年 | 2篇 |
2016年 | 1篇 |
2015年 | 1篇 |
2014年 | 4篇 |
2013年 | 6篇 |
2012年 | 9篇 |
2011年 | 5篇 |
2010年 | 7篇 |
2009年 | 2篇 |
2008年 | 4篇 |
2007年 | 4篇 |
2006年 | 6篇 |
2005年 | 1篇 |
2004年 | 4篇 |
2003年 | 1篇 |
2002年 | 4篇 |
2001年 | 3篇 |
2000年 | 2篇 |
1999年 | 1篇 |
1998年 | 3篇 |
1997年 | 2篇 |
1996年 | 4篇 |
1994年 | 1篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1989年 | 3篇 |
1988年 | 1篇 |
1986年 | 1篇 |
1983年 | 1篇 |
1977年 | 1篇 |
排序方式: 共有101条查询结果,搜索用时 15 毫秒
11.
A mathematical model is proposed which systematically investigates complex calcium oscillations in pancreatic acinar cells. This model is based on calcium-induced calcium release via inositol trisphosphate receptors (IPR) and ryanodine receptors (RyR) and includes calcium modulation of inositol (1,4,5) trisphosphate (IP3) levels through feedback regulation of degradation and production. In our model, the apical and the basal regions are separated by a region containing mitochondria, which is capable of restricting Ca2+ responses to the apical region. We were able to reproduce the observed oscillatory patterns, from baseline spikes to sinusoidal oscillations. The model predicts that calcium-dependent production and degradation of IP3 is a key mechanism for complex calcium oscillations in pancreatic acinar cells. A partial bifurcation analysis is performed which explores the dynamic behaviour of the model in both apical and basal regions. 相似文献
12.
13.
14.
15.
Litman GW; Rast JP; Shamblott MJ; Haire RN; Hulst M; Roess W; Litman RT; Hinds- Frey KR; Zilch A; Amemiya CT 《Molecular biology and evolution》1993,10(1):60-72
Immunoglobulins are encoded by a large multigene system that undergoes
somatic rearrangement and additional genetic change during the development
of immunoglobulin-producing cells. Inducible antibody and antibody-like
responses are found in all vertebrates. However, immunoglobulin possessing
disulfide-bonded heavy and light chains and domain-type organization has
been described only in representatives of the jawed vertebrates. High
degrees of nucleotide and predicted amino acid sequence identity are
evident when the segmental elements that constitute the immunoglobulin gene
loci in phylogenetically divergent vertebrates are compared. However, the
organization of gene loci and the manner in which the independent elements
recombine (and diversify) vary markedly among different taxa. One striking
pattern of gene organization is the "cluster type" that appears to be
restricted to the chondrichthyes (cartilaginous fishes) and limits
segmental rearrangement to closely linked elements. This type of gene
organization is associated with both heavy- and light-chain gene loci. In
some cases, the clusters are "joined" or "partially joined" in the germ
line, in effect predetermining or partially predetermining, respectively,
the encoded specificities (the assumption being that these are expressed)
of the individual loci. By relating the sequences of transcribed gene
products to their respective germ-line genes, it is evident that, in some
cases, joined-type genes are expressed. This raises a question about the
existence and/or nature of allelic exclusion in these species. The
extensive variation in gene organization found throughout the vertebrate
species may relate directly to the role of intersegmental
(V<==>D<==>J) distances in the commitment of the individual
antibody-producing cell to a particular genetic specificity. Thus, the
evolution of this locus, perhaps more so than that of others, may reflect
the interrelationships between genetic organization and function.
相似文献
16.
Huntingtin (Htt) is a membrane-associated scaffolding protein that interacts with microtubule motors as well as actin-associated adaptor molecules. We examined a role for Htt in the dynein-mediated intracellular trafficking of endosomes and lysosomes. In HeLa cells depleted of either Htt or dynein, early, recycling, and late endosomes (LE)/lysosomes all become dispersed. Despite altered organelle localization, kinetic assays indicate only minor defects in intracellular trafficking. Expression of full-length Htt is required to restore organelle localization in Htt-depleted cells, supporting a role for Htt as a scaffold that promotes functional interactions along its length. In dynein-depleted cells, LE/lysosomes accumulate in tight patches near the cortex, apparently enmeshed by cortactin-positive actin filaments; Latrunculin B-treatment disperses these patches. Peripheral LE/lysosomes in dynein-depleted cells no longer colocalize with microtubules. Htt may be required for this off-loading, as the loss of microtubule association is not seen in Htt-depleted cells or in cells depleted of both dynein and Htt. Inhibition of kinesin-1 relocalizes peripheral LE/lysosomes induced by Htt depletion but not by dynein depletion, consistent with their detachment from microtubules upon dynein knockdown. Together, these data support a model of Htt as a facilitator of dynein-mediated trafficking that may regulate the cytoskeletal association of dynamic organelles. 相似文献
17.
Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons
Autophagy is an essential cellular degradation pathway in neurons; defects in autophagy are sufficient to induce neurodegeneration. In this paper, we investigate autophagosome dynamics in primary dorsal root ganglion neurons. Autophagosome biogenesis occurs distally in a constitutive process at the neurite tip. Autophagosomes initially move bidirectionally and then switch to unidirectional, processive movement toward the cell soma driven by dynein. Autophagosomes copurify with anterograde and retrograde motors, suggesting that the activity of bound kinesin motors is effectively down-regulated to yield robust retrograde motility driven by dynein. Both organelle and soluble cargoes are internalized into autophagosomes, including mitochondria and ubiquitin. As autophagosomes move distally to proximally, they undergo maturation and become increasingly acidified, consistent with the formation of an autolysosomal compartment that may more efficiently degrade cargo. This maturation is accompanied by a switch to bidirectional motility characteristic of lysosomes. Together, autophagosome biogenesis and maturation in primary neurons is a constitutive process that is spatially and temporally regulated along the axon. 相似文献
18.
19.
HW Schroeder AG Hendricks K Ikeda H Shuman V Rodionov M Ikebe YE Goldman EL Holzbaur 《Biophysical journal》2012,103(1):48-58
Intracellular trafficking of organelles often involves cytoskeletal track switching. Organelles such as melanosomes are transported by multiple motors including kinesin-2, dynein, and myosin-V, which drive switching between microtubules and actin filaments during dispersion and aggregation. Here, we used optical trapping to determine the unitary and ensemble forces of kinesin-2, and to reconstitute cargo switching at cytoskeletal intersections in a minimal system with kinesin-2 and myosin-V motors bound to beads. Single kinesin-2 motors exerted forces up to ~5 pN, similar to kinesin-1. However, kinesin-2 motors were more likely to detach at submaximal forces, and the duration of force maintenance was short as compared to kinesin-1. In multimotor assays, force increased with kinesin-2 density but was not affected by the presence of myosin-V. In crossed filament assays, switching frequencies of motor-bound beads were dependent on the starting track. At equal average forces, beads tended to switch from microtubules onto overlying actin filaments consistent with the relatively faster detachment of kinesin-2 at near-maximal forces. Thus, in addition to relative force, switching probability at filament intersections is determined by the dynamics of motor-filament interaction, such as the quick detachment of kinesin-2 under load. This may enable fine-tuning of filament switching in the cell. 相似文献
20.
ISABELLA URRU JOHANNES STÖKL JEANINE LINZ TAMARA KRÜGEL MARCUS C. STENSMYR BILL S. HANSSON 《Biological journal of the Linnean Society. Linnean Society of London》2010,101(4):991-1001
Flowers of the genus Arum are known to attract dung‐breeding flies and beetles through olfactory deceit. In addition to this strategy, the genus has evolved several other pollination mechanisms. The present study aimed to characterize the pollination strategies of the Cretan Arum species by investigating the flowering phenology, thermogeny, inflorescence odours, and the pollinating fauna. The results obtained show that Arum cyrenaicum and Arum concinnatum emit a strong dung smell and exhibit the distinctive features associated with this pollination syndrome. Both species are highly thermogenic, have a similar odour profile and attract small‐bodied Diptera. Although sharing the same habitat, these two plant species are never found growing sympatrically as a result of the early blooming period of A. cyrenaicum. By contrast, Arum creticum and Arum idaeum have evolved a more traditional and mutually beneficial pollination mechanism. The stinking smell has been replaced by a more flower‐like odour that attracts bees (Lasioglossum sp.) and, occasionally, bugs (Dionconotus cruentatus). Although attracting the same pollinator, the main compound present in the odour of A. creticum is different from that of A. idaeum. Principal component analysis (PCA), based on physiologically active components of the flower odours determined by testing on the antenna of the Lasioglossum bee, revealed two different clusters, indicating that pollinators can potentially discriminate between the odours of the two species. A further PCA on the main floral odour volatiles as identified by gas chroatography‐mass spectroscopy from all the Arum species under investigation displayed odour‐based similarities and differences among the species. The PCA‐gas chomotography‐electroantennographic detection active peaks analysis showed that the two species, A. creticum and A. idaeum, form two groups and are clearly separated from A. cyrenaicum and A. concinnatum, which, conversely, cluster together. The evolutionary forces and selective pressures leading to diversification of pollination mechanisms in the Cretan Arum spp. are discussed. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 991–1001. 相似文献