首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19275篇
  免费   2842篇
  国内免费   203篇
  2023年   43篇
  2022年   95篇
  2021年   210篇
  2020年   183篇
  2019年   211篇
  2018年   320篇
  2017年   293篇
  2016年   428篇
  2015年   513篇
  2014年   625篇
  2013年   724篇
  2012年   801篇
  2011年   920篇
  2010年   537篇
  2009年   532篇
  2008年   666篇
  2007年   651篇
  2006年   636篇
  2005年   555篇
  2004年   507篇
  2003年   499篇
  2002年   475篇
  2001年   2288篇
  2000年   2119篇
  1999年   1488篇
  1998年   429篇
  1997年   450篇
  1996年   380篇
  1995年   352篇
  1994年   268篇
  1993年   222篇
  1992年   718篇
  1991年   587篇
  1990年   499篇
  1989年   393篇
  1988年   307篇
  1987年   245篇
  1986年   181篇
  1985年   137篇
  1984年   85篇
  1983年   65篇
  1982年   44篇
  1981年   41篇
  1980年   26篇
  1979年   31篇
  1978年   27篇
  1976年   32篇
  1973年   31篇
  1972年   25篇
  1970年   25篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
942.
An activating BRAF (V600E) kinase mutation occurs in approximately half of melanomas. Recent clinical studies have demonstrated that vemurafenib (PLX4032) and dabrafenib, potent and selective inhibitors of mutant v-raf murine sarcoma viral oncogene homolog B1 (BRAF), exhibit remarkable activities in patients with V600 BRAF mutant melanomas. However, acquired drug resistance invariably develops after the initial treatment. Identification of acquired resistance mechanisms may inform the development of new therapies that elicit long-term responses of melanomas to BRAF inhibitors. Here we report that increased expression of AEBP1 (adipocyte enhancer-binding protein 1) confers acquired resistance to BRAF inhibition in melanoma. AEBP1 is shown to be highly upregulated in PLX4032-resistant melanoma cells because of the hyperactivation of the PI3K/Akt-cAMP response element-binding protein (CREB) signaling pathway. This upregulates AEBP1 expression and thus leads to the activation of NF-κB via accelerating IκBa degradation. In addition, inhibition of the PI3K/Akt-CREB-AEBP1-NF-κB pathway greatly reverses the PLX4032-resistant phenotype of melanoma cells. Furthermore, increased expression of AEBP1 is validated in post-treatment tumors in patients with acquired resistance to BRAF inhibitor. Therefore, these results reveal a novel PI3K/Akt-CREB-AEBP1-NF-κB pathway whose activation contributes to acquired resistance to BRAF inhibition, and suggest that this pathway, particularly AEBP1, may represent a novel therapeutic target for treating BRAF inhibitor-resistant melanoma.  相似文献   
943.
L Cui  Y Shi  X Zhou  X Wang  J Wang  Y Lan  M Wang  L Zheng  H Li  Q Wu  J Zhang  D Fan  Y Han 《Cell death & disease》2013,4(11):e918
In a previous study, we elucidated the specific microRNA (miRNA) profile of hepatic differentiation. In this study, we aimed to clarify the instructive role of six overexpressed miRNAs (miR-1246, miR-1290, miR-148a, miR-30a, miR-424 and miR-542-5p) during hepatic differentiation of human umbilical cord lining-derived mesenchymal stem cells (hMSCs) and to test whether overexpression of any of these miRNAs is sufficient to induce differentiation of the hMSCs into hepatocyte-like cells. Before hepatic differentiation, hMSCs were infected with a lentivirus containing a miRNA inhibitor sequence. We found that downregulation of any one of the six hepatic differentiation-specific miRNAs can inhibit HGF-induced hepatic differentiation including albumin expression and LDL uptake. Although overexpression of any one of the six miRNAs alone or liver-enriched miR-122 cannot initiate hepatic differentiation, ectopic overexpression of seven miRNAs (miR-1246, miR-1290, miR-148a, miR-30a, miR-424, miR-542-5p and miR-122) together can stimulate hMSC conversion into functionally mature induced hepatocytes (iHep). Additionally, after transplantation of the iHep cells into mice with CCL4-induced liver injury, we found that iHep not only can improve liver function but it also can restore injured livers. The findings from this study indicate that miRNAs have the capability of directly converting hMSCs to a hepatocyte phenotype in vitro.  相似文献   
944.
945.
Apoptosis resistance is a hurdle for cancer treatment. HECTD3, a new E3 ubiquitin ligase, interacts with caspase-8 death effector domains and ubiquitinates caspase-8 with K63-linked polyubiquitin chains that do not target caspase-8 for degradation but decrease the caspase-8 activation. HECTD3 depletion can sensitize cancer cells to extrinsic apoptotic stimuli. In addition, HECTD3 inhibits TNF-related apoptosis-inducing ligand (TRAIL)-induced caspase-8 cleavage in an E3 ligase activity-dependent manner. Mutation of the caspase-8 ubiquitination site at K215 abolishes the HECTD3 protection from TRAIL-induced cleavage. Finally, HECTD3 is frequently overexpressed in breast carcinomas. These findings suggest that caspase-8 ubiquitination by HECTD3 confers cancer cell survival.  相似文献   
946.
Dichloroacetate (DCA) is an inhibitor of pyruvate dehydrogenase kinase (PDK), and recently it has been shown as a promising nontoxic antineoplastic agent. In this study, we demonstrated that DCA could induce autophagy in LoVo cells, which were confirmed by the formation of autophagosomes, appearance of punctate patterns of LC3 immunoreactivity and activation of autophagy associated proteins. Moreover, autophagy inhibition by 3-methyladenine (3-MA) or Atg7 siRNA treatment can significantly enhance DCA-induced apoptosis. To determine the underlying mechanism of DCA-induced autophagy, target identification using drug affinity responsive target stability (DARTS) coupled with ESI-Q-TOF MS/MS analysis were utilized to profile differentially expressed proteins between control and DCA-treated LoVo cells. As a result, Cathepsin D (CTSD) and thioredoxin-like protein 1 (TXNL1) were identified with significant alterations compared with control. Further study indicated that DCA treatment significantly promoted abnormal reactive oxygen species (ROS) production. On the other hand, DCA-triggered autophagy could be attenuated by N-acetyl cysteine (NAC), a ROS inhibitor. Finally, we demonstrated that the Akt-mTOR signaling pathway, a major negative regulator of autophagy, was suppressed by DCA treatment. To our knowledge, it was the first study to show that DCA induced protective autophagy in LoVo cells, and the potential mechanisms were involved in ROS imbalance and Akt-mTOR signaling pathway suppression.  相似文献   
947.
S Chen  Q Han  X Wang  M Yang  Z Zhang  P Li  A Chen  C Hu  S Li 《Cell death & disease》2013,4(10):e842
Interferon regulatory factor-4 binding protein (IBP) is a novel upstream activator of Rho GTPases. Our previous studies have shown that ectopic expression of IBP was correlated with malignant behaviors of human breast cancer cells, and invasive human breast cancer had high expression of IBP that promoted the proliferation of these cells. However, it remains unknown whether autophagy inhibition contributes to IBP-mediated tumorigenesis. In this study, we for the first time, reported that upregulation of IBP expression significantly suppressed the autophagy of breast cancer cells, and downregulation of IBP expression markedly induced autophagy of these cells. Further investigation revealed that IBP effectively counteracted autophagy by directly activating mammalian target of rapamycin complex 2 (mTORC2) and upregulating phosphorylation of Akt on ser473 and FOXO3a on Thr32. Moreover, IBP-mediated suppression of autophagy was dependent on mTORC2/Akt/FOXO3a signaling pathway. Finally, our results demonstrated that IBP-mediated breast cancer cell growth in vitro and in vivo was strongly correlated with suppression of mTORC2-dependent autophagy. These findings suggest that the anti-autophagic property of IBP has an important role in IBP-mediated tumorigenesis, and IBP may serve as an attractive target for treatment of breast cancer.  相似文献   
948.
Sulfate-reducing bacteria (SRB) from the anaerobic sediments of the freshwater Baihua Lake (Guizhou Province, China) at eutrophicated sites polluted with heavy metals, particularly with mercury, have been studied. SRB belonging to the genus Desulfobulbus prevailed. A detailed study of the dominating Desulfobulbus isolate designated as strain BH revealed its difference in regards to genetic, morphological, physiological, and biochemical characteristics from the other species of this genus. Strain BH utilized a wide range of organic substrates, demonstrated a high level of hydrogen sulfide production, and could be considered an important component of the microbial community in the polluted lake.  相似文献   
949.
X Hu  J Gao  Y Liao  S Tang  F Lu 《Cell death & disease》2013,4(10):e898
Retinoic acid (RA) contributes to cleft palate; however, the cellular and molecular mechanisms responsible for the deleterious effects on the developing palate are unclear. Wnt signaling is a candidate pathway in the cleft palate and is associated with RA in organ development; thus, we aim to investigate whether RA-induced cleft palate also results from altered Wnt signaling. Administration of RA to mice altered cell proliferation and apoptosis in craniofacial tissues by regulating molecules controlling cell cycle and p38 MAPK signaling, respectively. This altered cell fate by RA is a crucial mechanism contributing to 100% incidence of cleft palate. Moreover, Wnt/β-catenin signaling was completely inhibited by RA in the early developing palate via its binding and activation with RA receptor (RAR) and is responsible for RA-induced cleft palate. Furthermore, PI3K/Akt signaling was also involved in actions of RA. Our findings help in elucidating the mechanisms of RA-induced cleft palate.  相似文献   
950.
X Guo  Y Dong  S Yin  C Zhao  Y Huo  L Fan  H Hu 《Cell death & disease》2013,4(10):e822
Patulin (PAT) is one of the most common mycotoxins found in moldy fruits. Skin contact is one of the most likely exposure routes of PAT. Investigation of dermal toxicity of PAT is clearly needed and has been highlighted by WHO. In the present study, using human keratinocyte HaCaT cells as a model, we found that treatment with PAT caused an increased autophagosome accumulation. Measurements of autophagic flux demonstrated that the accumulation of autophagosomes by PAT was not directly due to enhanced autophagosome formation but due to inhibition of autophagosome degradation. Reductions in the activities of the lysosomal enzymes cathepsin B and cathepsin D by PAT might contribute to this inhibitory effect. Consistent with this, inhibition of autophagosome degradation by PAT resulted in accumulation of p62 that functioned as a pro-survival signal. The pro-survival function of p62 was found to be attributed to reactive oxygen species-mediated cytoprotective endoplasmic reticulum (ER) stress response. ER stress exerted cytoprotective effect via extracellular signal-regulated kinase1/2-dependent B-cell CLL/lymphoma 2-associated agonist of cell death inhibitory phosphorylation. Given the critical role of autophagy and its substrate p62 in carcinogenesis, our findings may have important implications in PAT-induced skin carcinogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号