首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   302篇
  免费   36篇
  2021年   5篇
  2018年   3篇
  2016年   8篇
  2015年   8篇
  2014年   4篇
  2013年   8篇
  2012年   13篇
  2011年   8篇
  2010年   7篇
  2009年   6篇
  2008年   10篇
  2007年   9篇
  2006年   10篇
  2005年   11篇
  2004年   9篇
  2003年   7篇
  2002年   10篇
  2001年   11篇
  2000年   3篇
  1999年   10篇
  1997年   5篇
  1996年   6篇
  1994年   4篇
  1992年   11篇
  1991年   10篇
  1990年   7篇
  1989年   11篇
  1988年   6篇
  1987年   7篇
  1986年   8篇
  1985年   7篇
  1984年   7篇
  1983年   10篇
  1982年   9篇
  1981年   2篇
  1980年   7篇
  1979年   4篇
  1978年   5篇
  1977年   2篇
  1976年   2篇
  1975年   5篇
  1974年   6篇
  1973年   7篇
  1972年   2篇
  1971年   4篇
  1970年   4篇
  1968年   6篇
  1967年   2篇
  1966年   2篇
  1951年   1篇
排序方式: 共有338条查询结果,搜索用时 31 毫秒
61.
62.
Dynamic rearrangements of the actin cytoskeleton power cell motility in contexts ranging from intracellular microbial pathogenesis to axon guidance. The Ena/VASP family proteins-Mena, VASP, and Evl-are believed to control cell motility by serving as a direct link between signaling events and the actin cytoskeleton. It has previously been reported that a novel miniature protein, pGolemi, binds with high affinity to the EVH1 domain of Mena (Mena1-112) but not to those of VASP (VASP1-115) or Evl (Evl1-115) and also causes an unusual defect in actin-driven Listeria monocytogenes motility. Here, scanning mutagenesis was used to examine the effects of single amino acid changes within pGolemi on EVH1 domain affinity and specificity, miniature protein secondary structure, and L. monocytogenes motility. The data suggest that pGolemi contains the expected aPP-like fold and binds Mena1-112 in a manner highly analogous to the proline-rich repeat region of L. monocytogenes ActA protein. Residues throughout pGolemi contribute to both EVH1 domain affinity and paralog specificity. Moreover, the affinities of pGolemi variants for Mena1-112 correlate with selectivity against the EVH1 domains of VASP and Evl. In L. monocytogenes motility assays, speed and speed variability correlate strongly with EVH1 paralog specificity, suggesting that the Ena/VASP paralogs do not play equivalent roles in the process of L. monocytogenes actin tail maturation.  相似文献   
63.
Neurological deficits caused by H-I (hypoxia-ischaemia) to the perinatal brain are often severely debilitating and lead to motor impairment, intellectual disability and seizures. Perinatal brain injury is distinct from adult brain injury in that the developing brain is undergoing the normal process of neuronal elimination by apoptotic cell death and thus the apoptotic machinery is more easily engaged and activated in response to injury. Thus cell death in response to neonatal H-I brain injury is partially due to mitochondrial dysfunction and activation of the apoptosome and caspase 3. An important regulator of the apoptotic response following mitochondrial dysfunction is XIAP (X-linked inhibitor of apoptosis protein). XIAP inhibits apoptosis at the level of caspase 9 and caspase 3 activation, and lack of XIAP in vitro has been shown to lead to increased apoptotic cell death. In the present study we show that mice lacking the gene encoding the XIAP protein have an exacerbated response to neonatal H-I injury as measured by tissue loss at 7 days following the injury. In addition, when the XIAP-deficient mice were studied at 24 h post-H-I we found that the increase in injury correlates with an increased apoptotic response in the XIAP-deficient mice and also with brain imaging changes in T2-weighted magnetic resonance imaging and apparent diffusion coefficient that correspond to the location of apoptotic cell death. These results identify a critical role of XIAP in regulating neuronal apoptosis in vivo and demonstrate the enhanced vulnerability of neurons to injury in the absence of XIAP in the developing brain.  相似文献   
64.
Free iron in lung can cause the generation of reactive oxygen species, an important factor in chronic obstructive pulmonary disease (COPD) pathogenesis. Iron accumulation has been implicated in oxidative stress in other diseases, such as Alzheimer’s and Parkinson’s diseases, but little is known about iron accumulation in COPD. We sought to determine if iron content and the expression of iron transport and/or storage genes in lung differ between controls and COPD subjects, and whether changes in these correlate with airway obstruction. Explanted lung tissue was obtained from transplant donors, GOLD 2–3 COPD subjects, and GOLD 4 lung transplant recipients, and bronchoalveolar lavage (BAL) cells were obtained from non-smokers, healthy smokers, and GOLD 1–3 COPD subjects. Iron-positive cells were quantified histologically, and the expression of iron uptake (transferrin and transferrin receptor), storage (ferritin) and export (ferroportin) genes was examined by real-time RT-PCR assay. Percentage of iron-positive cells and expression levels of iron metabolism genes were examined for correlations with airflow limitation indices (forced expiratory volume in the first second (FEV1) and the ratio between FEV1 and forced vital capacity (FEV1/FVC)). The alveolar macrophage was identified as the predominant iron-positive cell type in lung tissues. Futhermore, the quantity of iron deposit and the percentage of iron positive macrophages were increased with COPD and emphysema severity. The mRNA expression of iron uptake and storage genes transferrin and ferritin were significantly increased in GOLD 4 COPD lungs compared to donors (6.9 and 3.22 fold increase, respectively). In BAL cells, the mRNA expression of transferrin, transferrin receptor and ferritin correlated with airway obstruction. These results support activation of an iron sequestration mechanism by alveolar macrophages in COPD, which we postulate is a protective mechanism against iron induced oxidative stress.  相似文献   
65.
In the presence of ATP hepatic microsomes sequester calcium. This sequestration is thought to be important in the modulation of free cytosolic calcium concentration. We find that on the addition of NADPH the uptake of calcium by the hepatic microsomes is inhibited 27-85%. This inhibition is reversed by the addition of 1 mM reduced glutathione (85-91% of control), incubation under a nitrogen atmosphere (112% of control), or incubation in a 80% carbon monoxide/20% oxygen atmosphere (75% of control). Superoxide dismutase had no effect on the inhibition, while catalase reversed the inhibition by 35%. The addition of 1 mM reduced glutathione at 2 and 5 min after the addition of NADPH led to uptakes of calcium which paralleled the uptake seen when the reduced glutathione was added at the beginning of the incubation. The effect of reduced glutathione showed saturation kinetics with a Km of 10 microM. Together these data suggest that cytochrome P-450 reduces the activity of the microsomal ATP-dependent calcium pump both by the production of hydrogen peroxide and by the direct oxidation of the protein thiols. The reversal of this effect by reduced glutathione appears to be enzymatically catalyzed.  相似文献   
66.
A single episode of ethanol intoxication triggers widespread apoptotic neurodegeneration in the infant rat or mouse brain. The cell death process occurs over a 6-16 h period following ethanol administration, is accompanied by a robust display of caspase-3 enzyme activation, and meets ultrastructural criteria for apoptosis. Two apoptotic pathways (intrinsic and extrinsic) have been described, either of which may culminate in the activation of caspase-3. The intrinsic pathway is regulated by Bax and Bcl-XL and involves Bax-induced mitochondrial dysfunction and release of cytochrome c as antecedent events leading to caspase-3 activation. Activation of caspase-8 is a key event preceding caspase-3 activation in the extrinsic pathway. In the present study, following ethanol administration to infant mice, we found no change in activated caspase-8, which suggests that the extrinsic pathway is not involved in ethanol-induced apoptosis. We also found that ethanol triggers robust caspase-3 activation and apoptotic neurodegeneration in C57BL/6 wildtype mice, but induces neither phenomenon in homozygous Bax-deficient mice. Therefore, it appears that ethanol-induced neuroapoptosis is an intrinsic pathway-mediated phenomenon involving Bax-induced disruption of mitochondrial membranes and cytochrome c release as early events leading to caspase-3 activation.  相似文献   
67.
Abstract. Woodland colonization on wetlands is considered to have a detrimental effect on their ecological value, even though detailed analysis of this process is lacking. This paper provides an evaluation of the ecological changes resulting from succession of poor fen (base‐poor mire) to willow wet woodland on Goss Moor NNR in Cornwall, UK. Different ages of willow carr were associated with eight understorey communities. During willow colonization, in the ground flora, there was a progressive decrease in poor fen species and an associated increase in woodland species, which appeared to be related to an increase in canopy cover and therefore shade. The most diverse community was found to be the most recent willow and was dominated by poor fen species. The oldest willow was the second most diverse and was associated with a reduction in poor fen species and an increase in woodland species. Architectural features were used successfully to assess the general condition and structure of willow. Tree height and DBH were identified as useful parameters to accurately assess willow age in the field. The implications of active intervention to remove willow in order to conserve the full range of communities within the hydrosere are discussed.  相似文献   
68.
ABCA1 is an ATP-binding cassette protein that transports cellular cholesterol and phospholipids onto high density lipoproteins (HDL) in plasma. Lack of ABCA1 in humans and mice causes abnormal lipidation and increased catabolism of HDL, resulting in very low plasma apoA-I, apoA-II, and HDL. Herein, we have used Abca1-/- mice to ask whether ABCA1 is involved in lipidation of HDL in the central nervous system (CNS). ApoE is the most abundant CNS apolipoprotein and is present in HDL-like lipoproteins in CSF. We found that Abca1-/- mice have greatly decreased apoE levels in both the cortex (80% reduction) and the CSF (98% reduction). CSF from Abca1-/- mice had significantly reduced cholesterol as well as small apoE-containing lipoproteins, suggesting abnormal lipidation of apoE. Astrocytes, the primary producer of CNS apoE, were cultured from Abca1+/+, +/-, and -/- mice, and nascent lipoprotein particles were collected. Abca1-/- astrocytes secreted lipoprotein particles that had markedly decreased cholesterol and apoE and had smaller apoE-containing particles than particles from Abca1+/+ astrocytes. These findings demonstrate that ABCA1 plays a critical role in CNS apoE metabolism. Since apoE isoforms and levels strongly influence Alzheimer's disease pathology and risk, these data suggest that ABCA1 may be a novel therapeutic target.  相似文献   
69.
We undertook a study to demonstrate whether inhalation of atropine could inhibit cold air-induced bronchoconstriction in a dose-dependent fashion. In seven subjects with asthma we assessed the effects of placebo and of various doses of inhaled atropine (0.13-2.08 mg) on a base-line specific airway resistance (sRaw) and on the increase in sRaw produced by 5 min of voluntary eucapnic hyperventilation with subfreezing air at -17 degrees C. We also assessed the effect of the lowest doses of atropine on the increase in sRaw produced by five breaths of 1.0% metacholine. Atropine in doses of 0.13 or 0.26 mg caused a maximal reduction in base-line sRaw and completely inhibited the effect of 1.0% methacholine on sRaw, but it did not inhibit the bronchomotor response to cold air. Higher doses of atropine did inhibit the effect of cold air on sRaw in a dose-dependent fashion. The dose of atropine required to inhibit this effect of cold air varied with the increase in sRaw produced by cold air after placebo. These results suggest that cold air causes bronchoconstriction through vagal pathways and that higher doses of antimuscarinic agents are required to inhibit vagally mediated bronchoconstriction than those required to reduce base-line airway tone or to inhibit the effects of a large dose of an inhaled muscarinic agonist.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号